Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-9-x^{2}=11
Combine x and -x to get 0.
-x^{2}=11+9
Add 9 to both sides.
-x^{2}=20
Add 11 and 9 to get 20.
x^{2}=-20
Divide both sides by -1.
x=2\sqrt{5}i x=-2\sqrt{5}i
The equation is now solved.
-9-x^{2}=11
Combine x and -x to get 0.
-9-x^{2}-11=0
Subtract 11 from both sides.
-20-x^{2}=0
Subtract 11 from -9 to get -20.
-x^{2}-20=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\left(-20\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 0 for b, and -20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1\right)\left(-20\right)}}{2\left(-1\right)}
Square 0.
x=\frac{0±\sqrt{4\left(-20\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{0±\sqrt{-80}}{2\left(-1\right)}
Multiply 4 times -20.
x=\frac{0±4\sqrt{5}i}{2\left(-1\right)}
Take the square root of -80.
x=\frac{0±4\sqrt{5}i}{-2}
Multiply 2 times -1.
x=-2\sqrt{5}i
Now solve the equation x=\frac{0±4\sqrt{5}i}{-2} when ± is plus.
x=2\sqrt{5}i
Now solve the equation x=\frac{0±4\sqrt{5}i}{-2} when ± is minus.
x=-2\sqrt{5}i x=2\sqrt{5}i
The equation is now solved.