Solve for x
x=77
Graph
Share
Copied to clipboard
-7\sqrt{x+4}=14-x
Subtract x from both sides of the equation.
\left(-7\sqrt{x+4}\right)^{2}=\left(14-x\right)^{2}
Square both sides of the equation.
\left(-7\right)^{2}\left(\sqrt{x+4}\right)^{2}=\left(14-x\right)^{2}
Expand \left(-7\sqrt{x+4}\right)^{2}.
49\left(\sqrt{x+4}\right)^{2}=\left(14-x\right)^{2}
Calculate -7 to the power of 2 and get 49.
49\left(x+4\right)=\left(14-x\right)^{2}
Calculate \sqrt{x+4} to the power of 2 and get x+4.
49x+196=\left(14-x\right)^{2}
Use the distributive property to multiply 49 by x+4.
49x+196=196-28x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(14-x\right)^{2}.
49x+196-196=-28x+x^{2}
Subtract 196 from both sides.
49x=-28x+x^{2}
Subtract 196 from 196 to get 0.
49x+28x=x^{2}
Add 28x to both sides.
77x=x^{2}
Combine 49x and 28x to get 77x.
77x-x^{2}=0
Subtract x^{2} from both sides.
x\left(77-x\right)=0
Factor out x.
x=0 x=77
To find equation solutions, solve x=0 and 77-x=0.
0-7\sqrt{0+4}=14
Substitute 0 for x in the equation x-7\sqrt{x+4}=14.
-14=14
Simplify. The value x=0 does not satisfy the equation because the left and the right hand side have opposite signs.
77-7\sqrt{77+4}=14
Substitute 77 for x in the equation x-7\sqrt{x+4}=14.
14=14
Simplify. The value x=77 satisfies the equation.
x=77
Equation -7\sqrt{x+4}=14-x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}