Solve for x
x\geq -\frac{4}{7}
Graph
Share
Copied to clipboard
x-5\leq \frac{3}{2}\times 3x+\frac{3}{2}\left(-2\right)
Use the distributive property to multiply \frac{3}{2} by 3x-2.
x-5\leq \frac{3\times 3}{2}x+\frac{3}{2}\left(-2\right)
Express \frac{3}{2}\times 3 as a single fraction.
x-5\leq \frac{9}{2}x+\frac{3}{2}\left(-2\right)
Multiply 3 and 3 to get 9.
x-5\leq \frac{9}{2}x+\frac{3\left(-2\right)}{2}
Express \frac{3}{2}\left(-2\right) as a single fraction.
x-5\leq \frac{9}{2}x+\frac{-6}{2}
Multiply 3 and -2 to get -6.
x-5\leq \frac{9}{2}x-3
Divide -6 by 2 to get -3.
x-5-\frac{9}{2}x\leq -3
Subtract \frac{9}{2}x from both sides.
-\frac{7}{2}x-5\leq -3
Combine x and -\frac{9}{2}x to get -\frac{7}{2}x.
-\frac{7}{2}x\leq -3+5
Add 5 to both sides.
-\frac{7}{2}x\leq 2
Add -3 and 5 to get 2.
x\geq 2\left(-\frac{2}{7}\right)
Multiply both sides by -\frac{2}{7}, the reciprocal of -\frac{7}{2}. Since -\frac{7}{2} is negative, the inequality direction is changed.
x\geq \frac{2\left(-2\right)}{7}
Express 2\left(-\frac{2}{7}\right) as a single fraction.
x\geq \frac{-4}{7}
Multiply 2 and -2 to get -4.
x\geq -\frac{4}{7}
Fraction \frac{-4}{7} can be rewritten as -\frac{4}{7} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}