Solve for x
x=11
Graph
Share
Copied to clipboard
\left(x-4\right)^{2}=\left(\sqrt{6x-17}\right)^{2}
Square both sides of the equation.
x^{2}-8x+16=\left(\sqrt{6x-17}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
x^{2}-8x+16=6x-17
Calculate \sqrt{6x-17} to the power of 2 and get 6x-17.
x^{2}-8x+16-6x=-17
Subtract 6x from both sides.
x^{2}-14x+16=-17
Combine -8x and -6x to get -14x.
x^{2}-14x+16+17=0
Add 17 to both sides.
x^{2}-14x+33=0
Add 16 and 17 to get 33.
a+b=-14 ab=33
To solve the equation, factor x^{2}-14x+33 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,-33 -3,-11
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 33.
-1-33=-34 -3-11=-14
Calculate the sum for each pair.
a=-11 b=-3
The solution is the pair that gives sum -14.
\left(x-11\right)\left(x-3\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=11 x=3
To find equation solutions, solve x-11=0 and x-3=0.
11-4=\sqrt{6\times 11-17}
Substitute 11 for x in the equation x-4=\sqrt{6x-17}.
7=7
Simplify. The value x=11 satisfies the equation.
3-4=\sqrt{6\times 3-17}
Substitute 3 for x in the equation x-4=\sqrt{6x-17}.
-1=1
Simplify. The value x=3 does not satisfy the equation because the left and the right hand side have opposite signs.
x=11
Equation x-4=\sqrt{6x-17} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}