Solve for x
x=-\frac{2}{3}\approx -0.666666667
x=-3
Graph
Share
Copied to clipboard
x-3\left(x^{2}+4x+4\right)=-3\times 2
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
x-3x^{2}-12x-12=-3\times 2
Use the distributive property to multiply -3 by x^{2}+4x+4.
-11x-3x^{2}-12=-3\times 2
Combine x and -12x to get -11x.
-11x-3x^{2}-12=-6
Multiply -3 and 2 to get -6.
-11x-3x^{2}-12+6=0
Add 6 to both sides.
-11x-3x^{2}-6=0
Add -12 and 6 to get -6.
-3x^{2}-11x-6=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-11 ab=-3\left(-6\right)=18
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -3x^{2}+ax+bx-6. To find a and b, set up a system to be solved.
-1,-18 -2,-9 -3,-6
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 18.
-1-18=-19 -2-9=-11 -3-6=-9
Calculate the sum for each pair.
a=-2 b=-9
The solution is the pair that gives sum -11.
\left(-3x^{2}-2x\right)+\left(-9x-6\right)
Rewrite -3x^{2}-11x-6 as \left(-3x^{2}-2x\right)+\left(-9x-6\right).
-x\left(3x+2\right)-3\left(3x+2\right)
Factor out -x in the first and -3 in the second group.
\left(3x+2\right)\left(-x-3\right)
Factor out common term 3x+2 by using distributive property.
x=-\frac{2}{3} x=-3
To find equation solutions, solve 3x+2=0 and -x-3=0.
x-3\left(x^{2}+4x+4\right)=-3\times 2
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
x-3x^{2}-12x-12=-3\times 2
Use the distributive property to multiply -3 by x^{2}+4x+4.
-11x-3x^{2}-12=-3\times 2
Combine x and -12x to get -11x.
-11x-3x^{2}-12=-6
Multiply -3 and 2 to get -6.
-11x-3x^{2}-12+6=0
Add 6 to both sides.
-11x-3x^{2}-6=0
Add -12 and 6 to get -6.
-3x^{2}-11x-6=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-3\right)\left(-6\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -11 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\left(-3\right)\left(-6\right)}}{2\left(-3\right)}
Square -11.
x=\frac{-\left(-11\right)±\sqrt{121+12\left(-6\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-11\right)±\sqrt{121-72}}{2\left(-3\right)}
Multiply 12 times -6.
x=\frac{-\left(-11\right)±\sqrt{49}}{2\left(-3\right)}
Add 121 to -72.
x=\frac{-\left(-11\right)±7}{2\left(-3\right)}
Take the square root of 49.
x=\frac{11±7}{2\left(-3\right)}
The opposite of -11 is 11.
x=\frac{11±7}{-6}
Multiply 2 times -3.
x=\frac{18}{-6}
Now solve the equation x=\frac{11±7}{-6} when ± is plus. Add 11 to 7.
x=-3
Divide 18 by -6.
x=\frac{4}{-6}
Now solve the equation x=\frac{11±7}{-6} when ± is minus. Subtract 7 from 11.
x=-\frac{2}{3}
Reduce the fraction \frac{4}{-6} to lowest terms by extracting and canceling out 2.
x=-3 x=-\frac{2}{3}
The equation is now solved.
x-3\left(x^{2}+4x+4\right)=-3\times 2
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
x-3x^{2}-12x-12=-3\times 2
Use the distributive property to multiply -3 by x^{2}+4x+4.
-11x-3x^{2}-12=-3\times 2
Combine x and -12x to get -11x.
-11x-3x^{2}-12=-6
Multiply -3 and 2 to get -6.
-11x-3x^{2}=-6+12
Add 12 to both sides.
-11x-3x^{2}=6
Add -6 and 12 to get 6.
-3x^{2}-11x=6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}-11x}{-3}=\frac{6}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{11}{-3}\right)x=\frac{6}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+\frac{11}{3}x=\frac{6}{-3}
Divide -11 by -3.
x^{2}+\frac{11}{3}x=-2
Divide 6 by -3.
x^{2}+\frac{11}{3}x+\left(\frac{11}{6}\right)^{2}=-2+\left(\frac{11}{6}\right)^{2}
Divide \frac{11}{3}, the coefficient of the x term, by 2 to get \frac{11}{6}. Then add the square of \frac{11}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{11}{3}x+\frac{121}{36}=-2+\frac{121}{36}
Square \frac{11}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{11}{3}x+\frac{121}{36}=\frac{49}{36}
Add -2 to \frac{121}{36}.
\left(x+\frac{11}{6}\right)^{2}=\frac{49}{36}
Factor x^{2}+\frac{11}{3}x+\frac{121}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{6}\right)^{2}}=\sqrt{\frac{49}{36}}
Take the square root of both sides of the equation.
x+\frac{11}{6}=\frac{7}{6} x+\frac{11}{6}=-\frac{7}{6}
Simplify.
x=-\frac{2}{3} x=-3
Subtract \frac{11}{6} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}