Solve for x (complex solution)
x=\frac{1}{4}+\frac{1}{4}i=0.25+0.25i
x=\frac{1}{4}-\frac{1}{4}i=0.25-0.25i
Graph
Share
Copied to clipboard
-2x^{2}+x=\frac{1}{4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-2x^{2}+x-\frac{1}{4}=\frac{1}{4}-\frac{1}{4}
Subtract \frac{1}{4} from both sides of the equation.
-2x^{2}+x-\frac{1}{4}=0
Subtracting \frac{1}{4} from itself leaves 0.
x=\frac{-1±\sqrt{1^{2}-4\left(-2\right)\left(-\frac{1}{4}\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 1 for b, and -\frac{1}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-2\right)\left(-\frac{1}{4}\right)}}{2\left(-2\right)}
Square 1.
x=\frac{-1±\sqrt{1+8\left(-\frac{1}{4}\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-1±\sqrt{1-2}}{2\left(-2\right)}
Multiply 8 times -\frac{1}{4}.
x=\frac{-1±\sqrt{-1}}{2\left(-2\right)}
Add 1 to -2.
x=\frac{-1±i}{2\left(-2\right)}
Take the square root of -1.
x=\frac{-1±i}{-4}
Multiply 2 times -2.
x=\frac{-1+i}{-4}
Now solve the equation x=\frac{-1±i}{-4} when ± is plus. Add -1 to i.
x=\frac{1}{4}-\frac{1}{4}i
Divide -1+i by -4.
x=\frac{-1-i}{-4}
Now solve the equation x=\frac{-1±i}{-4} when ± is minus. Subtract i from -1.
x=\frac{1}{4}+\frac{1}{4}i
Divide -1-i by -4.
x=\frac{1}{4}-\frac{1}{4}i x=\frac{1}{4}+\frac{1}{4}i
The equation is now solved.
-2x^{2}+x=\frac{1}{4}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+x}{-2}=\frac{\frac{1}{4}}{-2}
Divide both sides by -2.
x^{2}+\frac{1}{-2}x=\frac{\frac{1}{4}}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-\frac{1}{2}x=\frac{\frac{1}{4}}{-2}
Divide 1 by -2.
x^{2}-\frac{1}{2}x=-\frac{1}{8}
Divide \frac{1}{4} by -2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=-\frac{1}{8}+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{1}{8}+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{1}{16}
Add -\frac{1}{8} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{4}\right)^{2}=-\frac{1}{16}
Factor x^{2}-\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{1}{16}}
Take the square root of both sides of the equation.
x-\frac{1}{4}=\frac{1}{4}i x-\frac{1}{4}=-\frac{1}{4}i
Simplify.
x=\frac{1}{4}+\frac{1}{4}i x=\frac{1}{4}-\frac{1}{4}i
Add \frac{1}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}