Solve for x
x=\left(\frac{3}{10}+\frac{1}{10}i\right)y-2
Solve for y
y=\left(3-i\right)x+\left(6-2i\right)
Share
Copied to clipboard
x-2\left(-1\right)+6i=yi+3xi^{3}
Calculate i to the power of 2 and get -1.
x-\left(-2\right)+6i=yi+3xi^{3}
Multiply 2 and -1 to get -2.
x+2+6i=yi+3xi^{3}
The opposite of -2 is 2.
x+2+6i=yi+3x\left(-i\right)
Calculate i to the power of 3 and get -i.
x+2+6i=yi-3ix
Multiply 3 and -i to get -3i.
x+2+6i-\left(-3ix\right)=yi
Subtract -3ix from both sides.
\left(1+3i\right)x+2+6i=yi
Combine x and 3ix to get \left(1+3i\right)x.
\left(1+3i\right)x+6i=yi-2
Subtract 2 from both sides.
\left(1+3i\right)x=yi-2-6i
Subtract 6i from both sides.
\left(1+3i\right)x=iy+\left(-2-6i\right)
The equation is in standard form.
\frac{\left(1+3i\right)x}{1+3i}=\frac{iy+\left(-2-6i\right)}{1+3i}
Divide both sides by 1+3i.
x=\frac{iy+\left(-2-6i\right)}{1+3i}
Dividing by 1+3i undoes the multiplication by 1+3i.
x=\left(\frac{3}{10}+\frac{1}{10}i\right)y-2
Divide iy+\left(-2-6i\right) by 1+3i.
x-2\left(-1\right)+6i=yi+3xi^{3}
Calculate i to the power of 2 and get -1.
x-\left(-2\right)+6i=yi+3xi^{3}
Multiply 2 and -1 to get -2.
x+2+6i=yi+3xi^{3}
The opposite of -2 is 2.
x+2+6i=yi+3x\left(-i\right)
Calculate i to the power of 3 and get -i.
x+2+6i=yi-3ix
Multiply 3 and -i to get -3i.
yi-3ix=x+2+6i
Swap sides so that all variable terms are on the left hand side.
yi=x+2+6i-\left(-3ix\right)
Subtract -3ix from both sides.
yi=\left(1+3i\right)x+2+6i
Combine x and 3ix to get \left(1+3i\right)x.
iy=\left(1+3i\right)x+\left(2+6i\right)
The equation is in standard form.
\frac{iy}{i}=\frac{\left(1+3i\right)x+\left(2+6i\right)}{i}
Divide both sides by i.
y=\frac{\left(1+3i\right)x+\left(2+6i\right)}{i}
Dividing by i undoes the multiplication by i.
y=\left(3-i\right)x+\left(6-2i\right)
Divide \left(1+3i\right)x+\left(2+6i\right) by i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}