Solve for x
x\neq 2
Graph
Quiz
Polynomial
5 problems similar to:
x - 2 - \frac { 4 } { x - 2 } = x \cdot \frac { x - 4 } { x - 2 }
Share
Copied to clipboard
\left(x-2\right)x+\left(x-2\right)\left(-2\right)-4=x\left(x-4\right)
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by x-2.
x^{2}-2x+\left(x-2\right)\left(-2\right)-4=x\left(x-4\right)
Use the distributive property to multiply x-2 by x.
x^{2}-2x-2x+4-4=x\left(x-4\right)
Use the distributive property to multiply x-2 by -2.
x^{2}-4x+4-4=x\left(x-4\right)
Combine -2x and -2x to get -4x.
x^{2}-4x=x\left(x-4\right)
Subtract 4 from 4 to get 0.
x^{2}-4x=x^{2}-4x
Use the distributive property to multiply x by x-4.
x^{2}-4x-x^{2}=-4x
Subtract x^{2} from both sides.
-4x=-4x
Combine x^{2} and -x^{2} to get 0.
-4x+4x=0
Add 4x to both sides.
0=0
Combine -4x and 4x to get 0.
\text{true}
Compare 0 and 0.
x\in \mathrm{R}
This is true for any x.
x\in \mathrm{R}\setminus 2
Variable x cannot be equal to 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}