Solve for x
x=2\sqrt{2}+3\approx 5.828427125
Graph
Share
Copied to clipboard
x-2\sqrt{x}=1
Add 1 to both sides. Anything plus zero gives itself.
-2\sqrt{x}=1-x
Subtract x from both sides of the equation.
\left(-2\sqrt{x}\right)^{2}=\left(1-x\right)^{2}
Square both sides of the equation.
\left(-2\right)^{2}\left(\sqrt{x}\right)^{2}=\left(1-x\right)^{2}
Expand \left(-2\sqrt{x}\right)^{2}.
4\left(\sqrt{x}\right)^{2}=\left(1-x\right)^{2}
Calculate -2 to the power of 2 and get 4.
4x=\left(1-x\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
4x=1-2x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-x\right)^{2}.
4x+2x=1+x^{2}
Add 2x to both sides.
6x=1+x^{2}
Combine 4x and 2x to get 6x.
6x-x^{2}=1
Subtract x^{2} from both sides.
-x^{2}+6x=1
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-x^{2}+6x-1=1-1
Subtract 1 from both sides of the equation.
-x^{2}+6x-1=0
Subtracting 1 from itself leaves 0.
x=\frac{-6±\sqrt{6^{2}-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 6 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
Square 6.
x=\frac{-6±\sqrt{36+4\left(-1\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-6±\sqrt{36-4}}{2\left(-1\right)}
Multiply 4 times -1.
x=\frac{-6±\sqrt{32}}{2\left(-1\right)}
Add 36 to -4.
x=\frac{-6±4\sqrt{2}}{2\left(-1\right)}
Take the square root of 32.
x=\frac{-6±4\sqrt{2}}{-2}
Multiply 2 times -1.
x=\frac{4\sqrt{2}-6}{-2}
Now solve the equation x=\frac{-6±4\sqrt{2}}{-2} when ± is plus. Add -6 to 4\sqrt{2}.
x=3-2\sqrt{2}
Divide -6+4\sqrt{2} by -2.
x=\frac{-4\sqrt{2}-6}{-2}
Now solve the equation x=\frac{-6±4\sqrt{2}}{-2} when ± is minus. Subtract 4\sqrt{2} from -6.
x=2\sqrt{2}+3
Divide -6-4\sqrt{2} by -2.
x=3-2\sqrt{2} x=2\sqrt{2}+3
The equation is now solved.
3-2\sqrt{2}-2\sqrt{3-2\sqrt{2}}-1=0
Substitute 3-2\sqrt{2} for x in the equation x-2\sqrt{x}-1=0.
4-4\times 2^{\frac{1}{2}}=0
Simplify. The value x=3-2\sqrt{2} does not satisfy the equation.
2\sqrt{2}+3-2\sqrt{2\sqrt{2}+3}-1=0
Substitute 2\sqrt{2}+3 for x in the equation x-2\sqrt{x}-1=0.
0=0
Simplify. The value x=2\sqrt{2}+3 satisfies the equation.
x=2\sqrt{2}+3
Equation -2\sqrt{x}=1-x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}