Solve for x
x=15
Graph
Share
Copied to clipboard
\left(x-2\right)^{2}=\left(\sqrt{10x+19}\right)^{2}
Square both sides of the equation.
x^{2}-4x+4=\left(\sqrt{10x+19}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4=10x+19
Calculate \sqrt{10x+19} to the power of 2 and get 10x+19.
x^{2}-4x+4-10x=19
Subtract 10x from both sides.
x^{2}-14x+4=19
Combine -4x and -10x to get -14x.
x^{2}-14x+4-19=0
Subtract 19 from both sides.
x^{2}-14x-15=0
Subtract 19 from 4 to get -15.
a+b=-14 ab=-15
To solve the equation, factor x^{2}-14x-15 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
1,-15 3,-5
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -15.
1-15=-14 3-5=-2
Calculate the sum for each pair.
a=-15 b=1
The solution is the pair that gives sum -14.
\left(x-15\right)\left(x+1\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=15 x=-1
To find equation solutions, solve x-15=0 and x+1=0.
15-2=\sqrt{10\times 15+19}
Substitute 15 for x in the equation x-2=\sqrt{10x+19}.
13=13
Simplify. The value x=15 satisfies the equation.
-1-2=\sqrt{10\left(-1\right)+19}
Substitute -1 for x in the equation x-2=\sqrt{10x+19}.
-3=3
Simplify. The value x=-1 does not satisfy the equation because the left and the right hand side have opposite signs.
x=15
Equation x-2=\sqrt{10x+19} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}