Solve for x
x=20
Graph
Share
Copied to clipboard
x-10=\frac{5}{9}x+\frac{5}{9}\left(-2\right)
Use the distributive property to multiply \frac{5}{9} by x-2.
x-10=\frac{5}{9}x+\frac{5\left(-2\right)}{9}
Express \frac{5}{9}\left(-2\right) as a single fraction.
x-10=\frac{5}{9}x+\frac{-10}{9}
Multiply 5 and -2 to get -10.
x-10=\frac{5}{9}x-\frac{10}{9}
Fraction \frac{-10}{9} can be rewritten as -\frac{10}{9} by extracting the negative sign.
x-10-\frac{5}{9}x=-\frac{10}{9}
Subtract \frac{5}{9}x from both sides.
\frac{4}{9}x-10=-\frac{10}{9}
Combine x and -\frac{5}{9}x to get \frac{4}{9}x.
\frac{4}{9}x=-\frac{10}{9}+10
Add 10 to both sides.
\frac{4}{9}x=-\frac{10}{9}+\frac{90}{9}
Convert 10 to fraction \frac{90}{9}.
\frac{4}{9}x=\frac{-10+90}{9}
Since -\frac{10}{9} and \frac{90}{9} have the same denominator, add them by adding their numerators.
\frac{4}{9}x=\frac{80}{9}
Add -10 and 90 to get 80.
x=\frac{80}{9}\times \frac{9}{4}
Multiply both sides by \frac{9}{4}, the reciprocal of \frac{4}{9}.
x=\frac{80\times 9}{9\times 4}
Multiply \frac{80}{9} times \frac{9}{4} by multiplying numerator times numerator and denominator times denominator.
x=\frac{80}{4}
Cancel out 9 in both numerator and denominator.
x=20
Divide 80 by 4 to get 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}