Evaluate
6x+10
Expand
6x+10
Graph
Share
Copied to clipboard
x-x-3-\left(x+1\right)^{2}-\left(x+2\right)^{2}+2\left(x+3\right)^{2}
To find the opposite of x+3, find the opposite of each term.
-3-\left(x+1\right)^{2}-\left(x+2\right)^{2}+2\left(x+3\right)^{2}
Combine x and -x to get 0.
-3-\left(x^{2}+2x+1\right)-\left(x+2\right)^{2}+2\left(x+3\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
-3-x^{2}-2x-1-\left(x+2\right)^{2}+2\left(x+3\right)^{2}
To find the opposite of x^{2}+2x+1, find the opposite of each term.
-4-x^{2}-2x-\left(x+2\right)^{2}+2\left(x+3\right)^{2}
Subtract 1 from -3 to get -4.
-4-x^{2}-2x-\left(x^{2}+4x+4\right)+2\left(x+3\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
-4-x^{2}-2x-x^{2}-4x-4+2\left(x+3\right)^{2}
To find the opposite of x^{2}+4x+4, find the opposite of each term.
-4-2x^{2}-2x-4x-4+2\left(x+3\right)^{2}
Combine -x^{2} and -x^{2} to get -2x^{2}.
-4-2x^{2}-6x-4+2\left(x+3\right)^{2}
Combine -2x and -4x to get -6x.
-8-2x^{2}-6x+2\left(x+3\right)^{2}
Subtract 4 from -4 to get -8.
-8-2x^{2}-6x+2\left(x^{2}+6x+9\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
-8-2x^{2}-6x+2x^{2}+12x+18
Use the distributive property to multiply 2 by x^{2}+6x+9.
-8-6x+12x+18
Combine -2x^{2} and 2x^{2} to get 0.
-8+6x+18
Combine -6x and 12x to get 6x.
10+6x
Add -8 and 18 to get 10.
x-x-3-\left(x+1\right)^{2}-\left(x+2\right)^{2}+2\left(x+3\right)^{2}
To find the opposite of x+3, find the opposite of each term.
-3-\left(x+1\right)^{2}-\left(x+2\right)^{2}+2\left(x+3\right)^{2}
Combine x and -x to get 0.
-3-\left(x^{2}+2x+1\right)-\left(x+2\right)^{2}+2\left(x+3\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
-3-x^{2}-2x-1-\left(x+2\right)^{2}+2\left(x+3\right)^{2}
To find the opposite of x^{2}+2x+1, find the opposite of each term.
-4-x^{2}-2x-\left(x+2\right)^{2}+2\left(x+3\right)^{2}
Subtract 1 from -3 to get -4.
-4-x^{2}-2x-\left(x^{2}+4x+4\right)+2\left(x+3\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
-4-x^{2}-2x-x^{2}-4x-4+2\left(x+3\right)^{2}
To find the opposite of x^{2}+4x+4, find the opposite of each term.
-4-2x^{2}-2x-4x-4+2\left(x+3\right)^{2}
Combine -x^{2} and -x^{2} to get -2x^{2}.
-4-2x^{2}-6x-4+2\left(x+3\right)^{2}
Combine -2x and -4x to get -6x.
-8-2x^{2}-6x+2\left(x+3\right)^{2}
Subtract 4 from -4 to get -8.
-8-2x^{2}-6x+2\left(x^{2}+6x+9\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
-8-2x^{2}-6x+2x^{2}+12x+18
Use the distributive property to multiply 2 by x^{2}+6x+9.
-8-6x+12x+18
Combine -2x^{2} and 2x^{2} to get 0.
-8+6x+18
Combine -6x and 12x to get 6x.
10+6x
Add -8 and 18 to get 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}