x - ( 35 \% x - 662.5 ) - ( 7 \% x ) = 10000
Solve for x
x = \frac{466875}{29} = 16099\frac{4}{29} \approx 16099.137931034
Graph
Share
Copied to clipboard
x-\left(\frac{7}{20}x-662.5\right)-\frac{7}{100}x=10000
Reduce the fraction \frac{35}{100} to lowest terms by extracting and canceling out 5.
x-\frac{7}{20}x-\left(-662.5\right)-\frac{7}{100}x=10000
To find the opposite of \frac{7}{20}x-662.5, find the opposite of each term.
x-\frac{7}{20}x+662.5-\frac{7}{100}x=10000
The opposite of -662.5 is 662.5.
\frac{13}{20}x+662.5-\frac{7}{100}x=10000
Combine x and -\frac{7}{20}x to get \frac{13}{20}x.
\frac{29}{50}x+662.5=10000
Combine \frac{13}{20}x and -\frac{7}{100}x to get \frac{29}{50}x.
\frac{29}{50}x=10000-662.5
Subtract 662.5 from both sides.
\frac{29}{50}x=9337.5
Subtract 662.5 from 10000 to get 9337.5.
x=9337.5\times \frac{50}{29}
Multiply both sides by \frac{50}{29}, the reciprocal of \frac{29}{50}.
x=\frac{18675}{2}\times \frac{50}{29}
Convert decimal number 9337.5 to fraction \frac{93375}{10}. Reduce the fraction \frac{93375}{10} to lowest terms by extracting and canceling out 5.
x=\frac{18675\times 50}{2\times 29}
Multiply \frac{18675}{2} times \frac{50}{29} by multiplying numerator times numerator and denominator times denominator.
x=\frac{933750}{58}
Do the multiplications in the fraction \frac{18675\times 50}{2\times 29}.
x=\frac{466875}{29}
Reduce the fraction \frac{933750}{58} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}