Solve for x
x=6
Graph
Share
Copied to clipboard
21x-21\left(2x-\frac{3x-4}{7}\right)=7\left(4x-27\right)-63
Multiply both sides of the equation by 21, the least common multiple of 7,3.
21x-21\left(2x-\frac{3x-4}{7}\right)=28x-189-63
Use the distributive property to multiply 7 by 4x-27.
21x-21\left(2x-\frac{3x-4}{7}\right)=28x-252
Subtract 63 from -189 to get -252.
21x-21\left(2x-\left(\frac{3}{7}x-\frac{4}{7}\right)\right)=28x-252
Divide each term of 3x-4 by 7 to get \frac{3}{7}x-\frac{4}{7}.
21x-21\left(2x-\frac{3}{7}x-\left(-\frac{4}{7}\right)\right)=28x-252
To find the opposite of \frac{3}{7}x-\frac{4}{7}, find the opposite of each term.
21x-21\left(2x-\frac{3}{7}x+\frac{4}{7}\right)=28x-252
The opposite of -\frac{4}{7} is \frac{4}{7}.
21x-21\left(\frac{11}{7}x+\frac{4}{7}\right)=28x-252
Combine 2x and -\frac{3}{7}x to get \frac{11}{7}x.
21x-21\times \frac{11}{7}x-21\times \frac{4}{7}=28x-252
Use the distributive property to multiply -21 by \frac{11}{7}x+\frac{4}{7}.
21x+\frac{-21\times 11}{7}x-21\times \frac{4}{7}=28x-252
Express -21\times \frac{11}{7} as a single fraction.
21x+\frac{-231}{7}x-21\times \frac{4}{7}=28x-252
Multiply -21 and 11 to get -231.
21x-33x-21\times \frac{4}{7}=28x-252
Divide -231 by 7 to get -33.
21x-33x+\frac{-21\times 4}{7}=28x-252
Express -21\times \frac{4}{7} as a single fraction.
21x-33x+\frac{-84}{7}=28x-252
Multiply -21 and 4 to get -84.
21x-33x-12=28x-252
Divide -84 by 7 to get -12.
-12x-12=28x-252
Combine 21x and -33x to get -12x.
-12x-12-28x=-252
Subtract 28x from both sides.
-40x-12=-252
Combine -12x and -28x to get -40x.
-40x=-252+12
Add 12 to both sides.
-40x=-240
Add -252 and 12 to get -240.
x=\frac{-240}{-40}
Divide both sides by -40.
x=6
Divide -240 by -40 to get 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}