Solve for x
x = \frac{73}{11} = 6\frac{7}{11} \approx 6.636363636
Graph
Share
Copied to clipboard
x-\frac{2}{3}x-\left(-\frac{5}{11}\right)=\frac{8}{3}
To find the opposite of \frac{2}{3}x-\frac{5}{11}, find the opposite of each term.
x-\frac{2}{3}x+\frac{5}{11}=\frac{8}{3}
The opposite of -\frac{5}{11} is \frac{5}{11}.
\frac{1}{3}x+\frac{5}{11}=\frac{8}{3}
Combine x and -\frac{2}{3}x to get \frac{1}{3}x.
\frac{1}{3}x=\frac{8}{3}-\frac{5}{11}
Subtract \frac{5}{11} from both sides.
\frac{1}{3}x=\frac{88}{33}-\frac{15}{33}
Least common multiple of 3 and 11 is 33. Convert \frac{8}{3} and \frac{5}{11} to fractions with denominator 33.
\frac{1}{3}x=\frac{88-15}{33}
Since \frac{88}{33} and \frac{15}{33} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{3}x=\frac{73}{33}
Subtract 15 from 88 to get 73.
x=\frac{73}{33}\times 3
Multiply both sides by 3, the reciprocal of \frac{1}{3}.
x=\frac{73\times 3}{33}
Express \frac{73}{33}\times 3 as a single fraction.
x=\frac{219}{33}
Multiply 73 and 3 to get 219.
x=\frac{73}{11}
Reduce the fraction \frac{219}{33} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}