Solve for x_2
x_{2}=\left(x-3\right)^{2}+4x
x-3\geq 0
Solve for x (complex solution)
\left\{\begin{matrix}x=\sqrt{x_{2}-8}+1\text{, }&x_{2}=12\text{ or }arg(\sqrt{x_{2}-8}-2)<\pi \\x=-\sqrt{x_{2}-8}+1\text{, }&arg(-\sqrt{x_{2}-8}-2)<\pi \end{matrix}\right.
Solve for x_2 (complex solution)
x_{2}=\left(x-3\right)^{2}+4x
x=3\text{ or }arg(x-3)<\pi
Solve for x
x=\sqrt{x_{2}-8}+1
x_{2}\geq 12
Graph
Share
Copied to clipboard
-\sqrt{x_{2}-4x}+x-x=3-x
Subtract x from both sides of the equation.
-\sqrt{x_{2}-4x}=3-x
Subtracting x from itself leaves 0.
\frac{-\sqrt{x_{2}-4x}}{-1}=\frac{3-x}{-1}
Divide both sides by -1.
\sqrt{x_{2}-4x}=\frac{3-x}{-1}
Dividing by -1 undoes the multiplication by -1.
\sqrt{x_{2}-4x}=x-3
Divide 3-x by -1.
x_{2}-4x=\left(x-3\right)^{2}
Square both sides of the equation.
x_{2}-4x-\left(-4x\right)=\left(x-3\right)^{2}-\left(-4x\right)
Subtract -4x from both sides of the equation.
x_{2}=\left(x-3\right)^{2}-\left(-4x\right)
Subtracting -4x from itself leaves 0.
x_{2}=\left(x-3\right)^{2}+4x
Subtract -4x from \left(x-3\right)^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}