Solve for x
x = \frac{\sqrt{46} + 2}{2} \approx 4.391164992
Graph
Share
Copied to clipboard
-\sqrt{25-x^{2}}=2-x
Subtract x from both sides of the equation.
\left(-\sqrt{25-x^{2}}\right)^{2}=\left(2-x\right)^{2}
Square both sides of the equation.
\left(-1\right)^{2}\left(\sqrt{25-x^{2}}\right)^{2}=\left(2-x\right)^{2}
Expand \left(-\sqrt{25-x^{2}}\right)^{2}.
1\left(\sqrt{25-x^{2}}\right)^{2}=\left(2-x\right)^{2}
Calculate -1 to the power of 2 and get 1.
1\left(25-x^{2}\right)=\left(2-x\right)^{2}
Calculate \sqrt{25-x^{2}} to the power of 2 and get 25-x^{2}.
25-x^{2}=\left(2-x\right)^{2}
Use the distributive property to multiply 1 by 25-x^{2}.
25-x^{2}=4-4x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-x\right)^{2}.
25-x^{2}-4=-4x+x^{2}
Subtract 4 from both sides.
21-x^{2}=-4x+x^{2}
Subtract 4 from 25 to get 21.
21-x^{2}+4x=x^{2}
Add 4x to both sides.
21-x^{2}+4x-x^{2}=0
Subtract x^{2} from both sides.
21-2x^{2}+4x=0
Combine -x^{2} and -x^{2} to get -2x^{2}.
-2x^{2}+4x+21=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{4^{2}-4\left(-2\right)\times 21}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 4 for b, and 21 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-2\right)\times 21}}{2\left(-2\right)}
Square 4.
x=\frac{-4±\sqrt{16+8\times 21}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-4±\sqrt{16+168}}{2\left(-2\right)}
Multiply 8 times 21.
x=\frac{-4±\sqrt{184}}{2\left(-2\right)}
Add 16 to 168.
x=\frac{-4±2\sqrt{46}}{2\left(-2\right)}
Take the square root of 184.
x=\frac{-4±2\sqrt{46}}{-4}
Multiply 2 times -2.
x=\frac{2\sqrt{46}-4}{-4}
Now solve the equation x=\frac{-4±2\sqrt{46}}{-4} when ± is plus. Add -4 to 2\sqrt{46}.
x=-\frac{\sqrt{46}}{2}+1
Divide -4+2\sqrt{46} by -4.
x=\frac{-2\sqrt{46}-4}{-4}
Now solve the equation x=\frac{-4±2\sqrt{46}}{-4} when ± is minus. Subtract 2\sqrt{46} from -4.
x=\frac{\sqrt{46}}{2}+1
Divide -4-2\sqrt{46} by -4.
x=-\frac{\sqrt{46}}{2}+1 x=\frac{\sqrt{46}}{2}+1
The equation is now solved.
-\frac{\sqrt{46}}{2}+1-\sqrt{25-\left(-\frac{\sqrt{46}}{2}+1\right)^{2}}=2
Substitute -\frac{\sqrt{46}}{2}+1 for x in the equation x-\sqrt{25-x^{2}}=2.
-46^{\frac{1}{2}}=2
Simplify. The value x=-\frac{\sqrt{46}}{2}+1 does not satisfy the equation because the left and the right hand side have opposite signs.
\frac{\sqrt{46}}{2}+1-\sqrt{25-\left(\frac{\sqrt{46}}{2}+1\right)^{2}}=2
Substitute \frac{\sqrt{46}}{2}+1 for x in the equation x-\sqrt{25-x^{2}}=2.
2=2
Simplify. The value x=\frac{\sqrt{46}}{2}+1 satisfies the equation.
x=\frac{\sqrt{46}}{2}+1
Equation -\sqrt{25-x^{2}}=2-x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}