Solve for x
x<\frac{9}{4}
Graph
Share
Copied to clipboard
6x-3x+2\left(x+1\right)<6+x+5
Multiply both sides of the equation by 6, the least common multiple of 2,3,6. Since 6 is positive, the inequality direction remains the same.
3x+2\left(x+1\right)<6+x+5
Combine 6x and -3x to get 3x.
3x+2x+2<6+x+5
Use the distributive property to multiply 2 by x+1.
5x+2<6+x+5
Combine 3x and 2x to get 5x.
5x+2<11+x
Add 6 and 5 to get 11.
5x+2-x<11
Subtract x from both sides.
4x+2<11
Combine 5x and -x to get 4x.
4x<11-2
Subtract 2 from both sides.
4x<9
Subtract 2 from 11 to get 9.
x<\frac{9}{4}
Divide both sides by 4. Since 4 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}