Solve for x
x>-\frac{2}{19}
Graph
Share
Copied to clipboard
12x-\left(x+2\right)<6\times 5x
Multiply both sides of the equation by 12, the least common multiple of 12,2. Since 12 is positive, the inequality direction remains the same.
12x-x-2<6\times 5x
To find the opposite of x+2, find the opposite of each term.
11x-2<6\times 5x
Combine 12x and -x to get 11x.
11x-2<30x
Multiply 6 and 5 to get 30.
11x-2-30x<0
Subtract 30x from both sides.
-19x-2<0
Combine 11x and -30x to get -19x.
-19x<2
Add 2 to both sides. Anything plus zero gives itself.
x>-\frac{2}{19}
Divide both sides by -19. Since -19 is negative, the inequality direction is changed.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}