Solve for u
u=\frac{6x+5}{11}
Solve for x
x=\frac{11u-5}{6}
Graph
Share
Copied to clipboard
6x-2\left(u-1\right)=6u-3\left(1-u\right)
Multiply both sides of the equation by 6, the least common multiple of 3,2.
6x-2u+2=6u-3\left(1-u\right)
Use the distributive property to multiply -2 by u-1.
6x-2u+2=6u-3+3u
Use the distributive property to multiply -3 by 1-u.
6x-2u+2=9u-3
Combine 6u and 3u to get 9u.
6x-2u+2-9u=-3
Subtract 9u from both sides.
6x-11u+2=-3
Combine -2u and -9u to get -11u.
-11u+2=-3-6x
Subtract 6x from both sides.
-11u=-3-6x-2
Subtract 2 from both sides.
-11u=-5-6x
Subtract 2 from -3 to get -5.
-11u=-6x-5
The equation is in standard form.
\frac{-11u}{-11}=\frac{-6x-5}{-11}
Divide both sides by -11.
u=\frac{-6x-5}{-11}
Dividing by -11 undoes the multiplication by -11.
u=\frac{6x+5}{11}
Divide -5-6x by -11.
6x-2\left(u-1\right)=6u-3\left(1-u\right)
Multiply both sides of the equation by 6, the least common multiple of 3,2.
6x-2u+2=6u-3\left(1-u\right)
Use the distributive property to multiply -2 by u-1.
6x-2u+2=6u-3+3u
Use the distributive property to multiply -3 by 1-u.
6x-2u+2=9u-3
Combine 6u and 3u to get 9u.
6x+2=9u-3+2u
Add 2u to both sides.
6x+2=11u-3
Combine 9u and 2u to get 11u.
6x=11u-3-2
Subtract 2 from both sides.
6x=11u-5
Subtract 2 from -3 to get -5.
\frac{6x}{6}=\frac{11u-5}{6}
Divide both sides by 6.
x=\frac{11u-5}{6}
Dividing by 6 undoes the multiplication by 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}