Solve for a
a=-\frac{10x-3}{6x-5}
x\neq \frac{5}{6}
Solve for x
x=\frac{5a+3}{2\left(3a+5\right)}
a\neq -\frac{5}{3}
Graph
Share
Copied to clipboard
15x-5\left(a+x\right)=3\left(1-2ax\right)
Multiply both sides of the equation by 15, the least common multiple of 3,5.
15x-5a-5x=3\left(1-2ax\right)
Use the distributive property to multiply -5 by a+x.
10x-5a=3\left(1-2ax\right)
Combine 15x and -5x to get 10x.
10x-5a=3-6xa
Use the distributive property to multiply 3 by 1-2ax.
10x-5a+6xa=3
Add 6xa to both sides.
-5a+6xa=3-10x
Subtract 10x from both sides.
\left(-5+6x\right)a=3-10x
Combine all terms containing a.
\left(6x-5\right)a=3-10x
The equation is in standard form.
\frac{\left(6x-5\right)a}{6x-5}=\frac{3-10x}{6x-5}
Divide both sides by -5+6x.
a=\frac{3-10x}{6x-5}
Dividing by -5+6x undoes the multiplication by -5+6x.
15x-5\left(a+x\right)=3\left(1-2ax\right)
Multiply both sides of the equation by 15, the least common multiple of 3,5.
15x-5a-5x=3\left(1-2ax\right)
Use the distributive property to multiply -5 by a+x.
10x-5a=3\left(1-2ax\right)
Combine 15x and -5x to get 10x.
10x-5a=3-6ax
Use the distributive property to multiply 3 by 1-2ax.
10x-5a+6ax=3
Add 6ax to both sides.
10x+6ax=3+5a
Add 5a to both sides.
\left(10+6a\right)x=3+5a
Combine all terms containing x.
\left(6a+10\right)x=5a+3
The equation is in standard form.
\frac{\left(6a+10\right)x}{6a+10}=\frac{5a+3}{6a+10}
Divide both sides by 10+6a.
x=\frac{5a+3}{6a+10}
Dividing by 10+6a undoes the multiplication by 10+6a.
x=\frac{5a+3}{2\left(3a+5\right)}
Divide 3+5a by 10+6a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}