Solve for x
x\geq -\frac{5}{4}
Graph
Share
Copied to clipboard
x-\frac{3}{2}\times 2x-\frac{3}{2}\left(-1\right)\leq 4
Use the distributive property to multiply -\frac{3}{2} by 2x-1.
x-3x-\frac{3}{2}\left(-1\right)\leq 4
Cancel out 2 and 2.
x-3x+\frac{3}{2}\leq 4
Multiply -\frac{3}{2} and -1 to get \frac{3}{2}.
-2x+\frac{3}{2}\leq 4
Combine x and -3x to get -2x.
-2x\leq 4-\frac{3}{2}
Subtract \frac{3}{2} from both sides.
-2x\leq \frac{8}{2}-\frac{3}{2}
Convert 4 to fraction \frac{8}{2}.
-2x\leq \frac{8-3}{2}
Since \frac{8}{2} and \frac{3}{2} have the same denominator, subtract them by subtracting their numerators.
-2x\leq \frac{5}{2}
Subtract 3 from 8 to get 5.
x\geq \frac{\frac{5}{2}}{-2}
Divide both sides by -2. Since -2 is negative, the inequality direction is changed.
x\geq \frac{5}{2\left(-2\right)}
Express \frac{\frac{5}{2}}{-2} as a single fraction.
x\geq \frac{5}{-4}
Multiply 2 and -2 to get -4.
x\geq -\frac{5}{4}
Fraction \frac{5}{-4} can be rewritten as -\frac{5}{4} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}