Solve for x
x\geq \frac{52}{3}
Graph
Share
Copied to clipboard
6x-2\left(27-1\right)\geq 3\left(2+x\right)-6
Multiply both sides of the equation by 6, the least common multiple of 3,2. Since 6 is positive, the inequality direction remains the same.
6x-2\times 26\geq 3\left(2+x\right)-6
Subtract 1 from 27 to get 26.
6x-52\geq 3\left(2+x\right)-6
Multiply -2 and 26 to get -52.
6x-52\geq 6+3x-6
Use the distributive property to multiply 3 by 2+x.
6x-52\geq 3x
Subtract 6 from 6 to get 0.
6x-52-3x\geq 0
Subtract 3x from both sides.
3x-52\geq 0
Combine 6x and -3x to get 3x.
3x\geq 52
Add 52 to both sides. Anything plus zero gives itself.
x\geq \frac{52}{3}
Divide both sides by 3. Since 3 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}