Solve for x
x=-1
x=12
Graph
Quiz
Quadratic Equation
5 problems similar to:
x - \frac { 2 x + 5 } { x - 9 } = \frac { 7 } { x - 9 }
Share
Copied to clipboard
\left(x-9\right)x-\left(2x+5\right)=7
Variable x cannot be equal to 9 since division by zero is not defined. Multiply both sides of the equation by x-9.
x^{2}-9x-\left(2x+5\right)=7
Use the distributive property to multiply x-9 by x.
x^{2}-9x-2x-5=7
To find the opposite of 2x+5, find the opposite of each term.
x^{2}-11x-5=7
Combine -9x and -2x to get -11x.
x^{2}-11x-5-7=0
Subtract 7 from both sides.
x^{2}-11x-12=0
Subtract 7 from -5 to get -12.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-12\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -11 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\left(-12\right)}}{2}
Square -11.
x=\frac{-\left(-11\right)±\sqrt{121+48}}{2}
Multiply -4 times -12.
x=\frac{-\left(-11\right)±\sqrt{169}}{2}
Add 121 to 48.
x=\frac{-\left(-11\right)±13}{2}
Take the square root of 169.
x=\frac{11±13}{2}
The opposite of -11 is 11.
x=\frac{24}{2}
Now solve the equation x=\frac{11±13}{2} when ± is plus. Add 11 to 13.
x=12
Divide 24 by 2.
x=-\frac{2}{2}
Now solve the equation x=\frac{11±13}{2} when ± is minus. Subtract 13 from 11.
x=-1
Divide -2 by 2.
x=12 x=-1
The equation is now solved.
\left(x-9\right)x-\left(2x+5\right)=7
Variable x cannot be equal to 9 since division by zero is not defined. Multiply both sides of the equation by x-9.
x^{2}-9x-\left(2x+5\right)=7
Use the distributive property to multiply x-9 by x.
x^{2}-9x-2x-5=7
To find the opposite of 2x+5, find the opposite of each term.
x^{2}-11x-5=7
Combine -9x and -2x to get -11x.
x^{2}-11x=7+5
Add 5 to both sides.
x^{2}-11x=12
Add 7 and 5 to get 12.
x^{2}-11x+\left(-\frac{11}{2}\right)^{2}=12+\left(-\frac{11}{2}\right)^{2}
Divide -11, the coefficient of the x term, by 2 to get -\frac{11}{2}. Then add the square of -\frac{11}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-11x+\frac{121}{4}=12+\frac{121}{4}
Square -\frac{11}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-11x+\frac{121}{4}=\frac{169}{4}
Add 12 to \frac{121}{4}.
\left(x-\frac{11}{2}\right)^{2}=\frac{169}{4}
Factor x^{2}-11x+\frac{121}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
Take the square root of both sides of the equation.
x-\frac{11}{2}=\frac{13}{2} x-\frac{11}{2}=-\frac{13}{2}
Simplify.
x=12 x=-1
Add \frac{11}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}