Solve for x
x = \frac{17}{15} = 1\frac{2}{15} \approx 1.133333333
Graph
Share
Copied to clipboard
x-\frac{2}{3}\times \frac{11}{5}+\frac{5}{3}\times 1=\frac{4}{3}
Convert decimal number 2.2 to fraction \frac{22}{10}. Reduce the fraction \frac{22}{10} to lowest terms by extracting and canceling out 2.
x-\frac{2\times 11}{3\times 5}+\frac{5}{3}\times 1=\frac{4}{3}
Multiply \frac{2}{3} times \frac{11}{5} by multiplying numerator times numerator and denominator times denominator.
x-\frac{22}{15}+\frac{5}{3}\times 1=\frac{4}{3}
Do the multiplications in the fraction \frac{2\times 11}{3\times 5}.
x-\frac{22}{15}+\frac{5}{3}=\frac{4}{3}
Multiply \frac{5}{3} and 1 to get \frac{5}{3}.
x-\frac{22}{15}+\frac{25}{15}=\frac{4}{3}
Least common multiple of 15 and 3 is 15. Convert -\frac{22}{15} and \frac{5}{3} to fractions with denominator 15.
x+\frac{-22+25}{15}=\frac{4}{3}
Since -\frac{22}{15} and \frac{25}{15} have the same denominator, add them by adding their numerators.
x+\frac{3}{15}=\frac{4}{3}
Add -22 and 25 to get 3.
x+\frac{1}{5}=\frac{4}{3}
Reduce the fraction \frac{3}{15} to lowest terms by extracting and canceling out 3.
x=\frac{4}{3}-\frac{1}{5}
Subtract \frac{1}{5} from both sides.
x=\frac{20}{15}-\frac{3}{15}
Least common multiple of 3 and 5 is 15. Convert \frac{4}{3} and \frac{1}{5} to fractions with denominator 15.
x=\frac{20-3}{15}
Since \frac{20}{15} and \frac{3}{15} have the same denominator, subtract them by subtracting their numerators.
x=\frac{17}{15}
Subtract 3 from 20 to get 17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}