Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

xx-1=6x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x^{2}-1=6x
Multiply x and x to get x^{2}.
x^{2}-1-6x=0
Subtract 6x from both sides.
x^{2}-6x-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-1\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -6 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-1\right)}}{2}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36+4}}{2}
Multiply -4 times -1.
x=\frac{-\left(-6\right)±\sqrt{40}}{2}
Add 36 to 4.
x=\frac{-\left(-6\right)±2\sqrt{10}}{2}
Take the square root of 40.
x=\frac{6±2\sqrt{10}}{2}
The opposite of -6 is 6.
x=\frac{2\sqrt{10}+6}{2}
Now solve the equation x=\frac{6±2\sqrt{10}}{2} when ± is plus. Add 6 to 2\sqrt{10}.
x=\sqrt{10}+3
Divide 6+2\sqrt{10} by 2.
x=\frac{6-2\sqrt{10}}{2}
Now solve the equation x=\frac{6±2\sqrt{10}}{2} when ± is minus. Subtract 2\sqrt{10} from 6.
x=3-\sqrt{10}
Divide 6-2\sqrt{10} by 2.
x=\sqrt{10}+3 x=3-\sqrt{10}
The equation is now solved.
xx-1=6x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x^{2}-1=6x
Multiply x and x to get x^{2}.
x^{2}-1-6x=0
Subtract 6x from both sides.
x^{2}-6x=1
Add 1 to both sides. Anything plus zero gives itself.
x^{2}-6x+\left(-3\right)^{2}=1+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=1+9
Square -3.
x^{2}-6x+9=10
Add 1 to 9.
\left(x-3\right)^{2}=10
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{10}
Take the square root of both sides of the equation.
x-3=\sqrt{10} x-3=-\sqrt{10}
Simplify.
x=\sqrt{10}+3 x=3-\sqrt{10}
Add 3 to both sides of the equation.