Evaluate
\frac{x+10}{6}
Expand
\frac{x}{6}+\frac{5}{3}
Graph
Share
Copied to clipboard
x-\frac{1}{3}\left(x-3-\frac{1}{2}\times 4-\frac{1}{2}\left(-3\right)x\right)
Use the distributive property to multiply -\frac{1}{2} by 4-3x.
x-\frac{1}{3}\left(x-3+\frac{-4}{2}-\frac{1}{2}\left(-3\right)x\right)
Express -\frac{1}{2}\times 4 as a single fraction.
x-\frac{1}{3}\left(x-3-2-\frac{1}{2}\left(-3\right)x\right)
Divide -4 by 2 to get -2.
x-\frac{1}{3}\left(x-3-2+\frac{-\left(-3\right)}{2}x\right)
Express -\frac{1}{2}\left(-3\right) as a single fraction.
x-\frac{1}{3}\left(x-3-2+\frac{3}{2}x\right)
Multiply -1 and -3 to get 3.
x-\frac{1}{3}\left(x-5+\frac{3}{2}x\right)
Subtract 2 from -3 to get -5.
x-\frac{1}{3}\left(\frac{5}{2}x-5\right)
Combine x and \frac{3}{2}x to get \frac{5}{2}x.
x-\frac{1}{3}\times \frac{5}{2}x-\frac{1}{3}\left(-5\right)
Use the distributive property to multiply -\frac{1}{3} by \frac{5}{2}x-5.
x+\frac{-5}{3\times 2}x-\frac{1}{3}\left(-5\right)
Multiply -\frac{1}{3} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
x+\frac{-5}{6}x-\frac{1}{3}\left(-5\right)
Do the multiplications in the fraction \frac{-5}{3\times 2}.
x-\frac{5}{6}x-\frac{1}{3}\left(-5\right)
Fraction \frac{-5}{6} can be rewritten as -\frac{5}{6} by extracting the negative sign.
x-\frac{5}{6}x+\frac{-\left(-5\right)}{3}
Express -\frac{1}{3}\left(-5\right) as a single fraction.
x-\frac{5}{6}x+\frac{5}{3}
Multiply -1 and -5 to get 5.
\frac{1}{6}x+\frac{5}{3}
Combine x and -\frac{5}{6}x to get \frac{1}{6}x.
x-\frac{1}{3}\left(x-3-\frac{1}{2}\times 4-\frac{1}{2}\left(-3\right)x\right)
Use the distributive property to multiply -\frac{1}{2} by 4-3x.
x-\frac{1}{3}\left(x-3+\frac{-4}{2}-\frac{1}{2}\left(-3\right)x\right)
Express -\frac{1}{2}\times 4 as a single fraction.
x-\frac{1}{3}\left(x-3-2-\frac{1}{2}\left(-3\right)x\right)
Divide -4 by 2 to get -2.
x-\frac{1}{3}\left(x-3-2+\frac{-\left(-3\right)}{2}x\right)
Express -\frac{1}{2}\left(-3\right) as a single fraction.
x-\frac{1}{3}\left(x-3-2+\frac{3}{2}x\right)
Multiply -1 and -3 to get 3.
x-\frac{1}{3}\left(x-5+\frac{3}{2}x\right)
Subtract 2 from -3 to get -5.
x-\frac{1}{3}\left(\frac{5}{2}x-5\right)
Combine x and \frac{3}{2}x to get \frac{5}{2}x.
x-\frac{1}{3}\times \frac{5}{2}x-\frac{1}{3}\left(-5\right)
Use the distributive property to multiply -\frac{1}{3} by \frac{5}{2}x-5.
x+\frac{-5}{3\times 2}x-\frac{1}{3}\left(-5\right)
Multiply -\frac{1}{3} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
x+\frac{-5}{6}x-\frac{1}{3}\left(-5\right)
Do the multiplications in the fraction \frac{-5}{3\times 2}.
x-\frac{5}{6}x-\frac{1}{3}\left(-5\right)
Fraction \frac{-5}{6} can be rewritten as -\frac{5}{6} by extracting the negative sign.
x-\frac{5}{6}x+\frac{-\left(-5\right)}{3}
Express -\frac{1}{3}\left(-5\right) as a single fraction.
x-\frac{5}{6}x+\frac{5}{3}
Multiply -1 and -5 to get 5.
\frac{1}{6}x+\frac{5}{3}
Combine x and -\frac{5}{6}x to get \frac{1}{6}x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}