Solve for x
x = \frac{118}{41} = 2\frac{36}{41} \approx 2.87804878
Graph
Share
Copied to clipboard
12x-3\times \frac{2-3x}{2}-4\left(8-x\right)=24
Multiply both sides of the equation by 12, the least common multiple of 4,3.
12x+\frac{-3\left(2-3x\right)}{2}-4\left(8-x\right)=24
Express -3\times \frac{2-3x}{2} as a single fraction.
12x+\frac{-3\left(2-3x\right)}{2}-32+4x=24
Use the distributive property to multiply -4 by 8-x.
16x+\frac{-3\left(2-3x\right)}{2}-32=24
Combine 12x and 4x to get 16x.
16x+\frac{-3\left(2-3x\right)}{2}=24+32
Add 32 to both sides.
16x+\frac{-6+9x}{2}=24+32
Use the distributive property to multiply -3 by 2-3x.
16x-3+\frac{9}{2}x=24+32
Divide each term of -6+9x by 2 to get -3+\frac{9}{2}x.
\frac{41}{2}x-3=24+32
Combine 16x and \frac{9}{2}x to get \frac{41}{2}x.
\frac{41}{2}x-3=56
Add 24 and 32 to get 56.
\frac{41}{2}x=56+3
Add 3 to both sides.
\frac{41}{2}x=59
Add 56 and 3 to get 59.
x=59\times \frac{2}{41}
Multiply both sides by \frac{2}{41}, the reciprocal of \frac{41}{2}.
x=\frac{59\times 2}{41}
Express 59\times \frac{2}{41} as a single fraction.
x=\frac{118}{41}
Multiply 59 and 2 to get 118.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}