Evaluate
\frac{xy+4x-y^{2}-2y}{y+4}
Differentiate w.r.t. x
1
Share
Copied to clipboard
x-\frac{y}{1+\frac{1}{\frac{2}{2}+\frac{y}{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2}{2}.
x-\frac{y}{1+\frac{1}{\frac{2+y}{2}}}
Since \frac{2}{2} and \frac{y}{2} have the same denominator, add them by adding their numerators.
x-\frac{y}{1+\frac{2}{2+y}}
Divide 1 by \frac{2+y}{2} by multiplying 1 by the reciprocal of \frac{2+y}{2}.
x-\frac{y}{\frac{2+y}{2+y}+\frac{2}{2+y}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2+y}{2+y}.
x-\frac{y}{\frac{2+y+2}{2+y}}
Since \frac{2+y}{2+y} and \frac{2}{2+y} have the same denominator, add them by adding their numerators.
x-\frac{y}{\frac{4+y}{2+y}}
Combine like terms in 2+y+2.
x-\frac{y\left(2+y\right)}{4+y}
Divide y by \frac{4+y}{2+y} by multiplying y by the reciprocal of \frac{4+y}{2+y}.
\frac{x\left(4+y\right)}{4+y}-\frac{y\left(2+y\right)}{4+y}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{4+y}{4+y}.
\frac{x\left(4+y\right)-y\left(2+y\right)}{4+y}
Since \frac{x\left(4+y\right)}{4+y} and \frac{y\left(2+y\right)}{4+y} have the same denominator, subtract them by subtracting their numerators.
\frac{4x+xy-2y-y^{2}}{4+y}
Do the multiplications in x\left(4+y\right)-y\left(2+y\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}