x ( y ^ { 2 } - 1 ) d x + y ( x ^ { 2 } - 1 ) d y = 0
Solve for d (complex solution)
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{C}\text{, }&\left(x=-\left(2y^{2}-1\right)^{-\frac{1}{2}}y\text{ or }x=\left(2y^{2}-1\right)^{-\frac{1}{2}}y\right)\text{ and }y\neq -\frac{\sqrt{2}}{2}\text{ and }y\neq \frac{\sqrt{2}}{2}\end{matrix}\right.
Solve for d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&\left(x=0\text{ and }y=0\right)\text{ or }\left(y>\frac{\sqrt{2}}{2}\text{ and }|x|=\frac{y}{\sqrt{2y^{2}-1}}\right)\text{ or }\left(y<-\frac{\sqrt{2}}{2}\text{ and }|x|=-\frac{y}{\sqrt{2y^{2}-1}}\right)\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=-\left(2y^{2}-1\right)^{-\frac{1}{2}}y\text{; }x=\left(2y^{2}-1\right)^{-\frac{1}{2}}y\text{, }&y\neq -\frac{\sqrt{2}}{2}\text{ and }y\neq \frac{\sqrt{2}}{2}\\x\in \mathrm{C}\text{, }&d=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{y}{\sqrt{2y^{2}-1}}\text{; }x=-\frac{y}{\sqrt{2y^{2}-1}}\text{, }&|y|>\frac{\sqrt{2}}{2}\\x=0\text{, }&y=0\\x\in \mathrm{R}\text{, }&d=0\end{matrix}\right.
Graph
Share
Copied to clipboard
x^{2}\left(y^{2}-1\right)d+y\left(x^{2}-1\right)dy=0
Multiply x and x to get x^{2}.
x^{2}\left(y^{2}-1\right)d+y^{2}\left(x^{2}-1\right)d=0
Multiply y and y to get y^{2}.
\left(x^{2}y^{2}-x^{2}\right)d+y^{2}\left(x^{2}-1\right)d=0
Use the distributive property to multiply x^{2} by y^{2}-1.
x^{2}y^{2}d-x^{2}d+y^{2}\left(x^{2}-1\right)d=0
Use the distributive property to multiply x^{2}y^{2}-x^{2} by d.
x^{2}y^{2}d-x^{2}d+\left(y^{2}x^{2}-y^{2}\right)d=0
Use the distributive property to multiply y^{2} by x^{2}-1.
x^{2}y^{2}d-x^{2}d+y^{2}x^{2}d-y^{2}d=0
Use the distributive property to multiply y^{2}x^{2}-y^{2} by d.
2x^{2}y^{2}d-x^{2}d-y^{2}d=0
Combine x^{2}y^{2}d and y^{2}x^{2}d to get 2x^{2}y^{2}d.
\left(2x^{2}y^{2}-x^{2}-y^{2}\right)d=0
Combine all terms containing d.
d=0
Divide 0 by -y^{2}+2y^{2}x^{2}-x^{2}.
x^{2}\left(y^{2}-1\right)d+y\left(x^{2}-1\right)dy=0
Multiply x and x to get x^{2}.
x^{2}\left(y^{2}-1\right)d+y^{2}\left(x^{2}-1\right)d=0
Multiply y and y to get y^{2}.
\left(x^{2}y^{2}-x^{2}\right)d+y^{2}\left(x^{2}-1\right)d=0
Use the distributive property to multiply x^{2} by y^{2}-1.
x^{2}y^{2}d-x^{2}d+y^{2}\left(x^{2}-1\right)d=0
Use the distributive property to multiply x^{2}y^{2}-x^{2} by d.
x^{2}y^{2}d-x^{2}d+\left(y^{2}x^{2}-y^{2}\right)d=0
Use the distributive property to multiply y^{2} by x^{2}-1.
x^{2}y^{2}d-x^{2}d+y^{2}x^{2}d-y^{2}d=0
Use the distributive property to multiply y^{2}x^{2}-y^{2} by d.
2x^{2}y^{2}d-x^{2}d-y^{2}d=0
Combine x^{2}y^{2}d and y^{2}x^{2}d to get 2x^{2}y^{2}d.
\left(2x^{2}y^{2}-x^{2}-y^{2}\right)d=0
Combine all terms containing d.
d=0
Divide 0 by -y^{2}+2y^{2}x^{2}-x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}