Solve for a
a=x+3-\frac{16}{x}
x\neq 0
Solve for x
x=\frac{\sqrt{a^{2}-6a+73}+a-3}{2}
x=\frac{-\sqrt{a^{2}-6a+73}+a-3}{2}
Graph
Share
Copied to clipboard
x^{2}-xa-13=3\left(1-x\right)
Use the distributive property to multiply x by x-a.
x^{2}-xa-13=3-3x
Use the distributive property to multiply 3 by 1-x.
-xa-13=3-3x-x^{2}
Subtract x^{2} from both sides.
-xa=3-3x-x^{2}+13
Add 13 to both sides.
-xa=16-3x-x^{2}
Add 3 and 13 to get 16.
\left(-x\right)a=16-3x-x^{2}
The equation is in standard form.
\frac{\left(-x\right)a}{-x}=\frac{16-3x-x^{2}}{-x}
Divide both sides by -x.
a=\frac{16-3x-x^{2}}{-x}
Dividing by -x undoes the multiplication by -x.
a=x+3-\frac{16}{x}
Divide 16-3x-x^{2} by -x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}