Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{x^{2}+y^{2}-cy}{x}\text{, }&x\neq 0\\a\in \mathrm{C}\text{, }&\left(y=0\text{ or }y=c\right)\text{ and }x=0\end{matrix}\right.
Solve for c (complex solution)
\left\{\begin{matrix}c=\frac{x^{2}-ax+y^{2}}{y}\text{, }&y\neq 0\\c\in \mathrm{C}\text{, }&\left(x=0\text{ or }x=a\right)\text{ and }y=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{x^{2}+y^{2}-cy}{x}\text{, }&x\neq 0\\a\in \mathrm{R}\text{, }&\left(y=0\text{ or }y=c\right)\text{ and }x=0\end{matrix}\right.
Solve for c
\left\{\begin{matrix}c=\frac{x^{2}-ax+y^{2}}{y}\text{, }&y\neq 0\\c\in \mathrm{R}\text{, }&\left(x=0\text{ or }x=a\right)\text{ and }y=0\end{matrix}\right.
Graph
Share
Copied to clipboard
x^{2}-xa+y\left(y-c\right)=0
Use the distributive property to multiply x by x-a.
x^{2}-xa+y^{2}-yc=0
Use the distributive property to multiply y by y-c.
-xa+y^{2}-yc=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
-xa-yc=-x^{2}-y^{2}
Subtract y^{2} from both sides.
-xa=-x^{2}-y^{2}+yc
Add yc to both sides.
\left(-x\right)a=cy-y^{2}-x^{2}
The equation is in standard form.
\frac{\left(-x\right)a}{-x}=\frac{cy-y^{2}-x^{2}}{-x}
Divide both sides by -x.
a=\frac{cy-y^{2}-x^{2}}{-x}
Dividing by -x undoes the multiplication by -x.
a=\frac{y^{2}-cy}{x}+x
Divide -x^{2}-y^{2}+cy by -x.
x^{2}-xa+y\left(y-c\right)=0
Use the distributive property to multiply x by x-a.
x^{2}-xa+y^{2}-yc=0
Use the distributive property to multiply y by y-c.
-xa+y^{2}-yc=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
y^{2}-yc=-x^{2}+xa
Add xa to both sides.
-yc=-x^{2}+xa-y^{2}
Subtract y^{2} from both sides.
\left(-y\right)c=ax-y^{2}-x^{2}
The equation is in standard form.
\frac{\left(-y\right)c}{-y}=\frac{ax-y^{2}-x^{2}}{-y}
Divide both sides by -y.
c=\frac{ax-y^{2}-x^{2}}{-y}
Dividing by -y undoes the multiplication by -y.
c=\frac{x^{2}-ax}{y}+y
Divide -x^{2}-y^{2}+xa by -y.
x^{2}-xa+y\left(y-c\right)=0
Use the distributive property to multiply x by x-a.
x^{2}-xa+y^{2}-yc=0
Use the distributive property to multiply y by y-c.
-xa+y^{2}-yc=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
-xa-yc=-x^{2}-y^{2}
Subtract y^{2} from both sides.
-xa=-x^{2}-y^{2}+yc
Add yc to both sides.
\left(-x\right)a=cy-y^{2}-x^{2}
The equation is in standard form.
\frac{\left(-x\right)a}{-x}=\frac{cy-y^{2}-x^{2}}{-x}
Divide both sides by -x.
a=\frac{cy-y^{2}-x^{2}}{-x}
Dividing by -x undoes the multiplication by -x.
a=\frac{y^{2}-cy}{x}+x
Divide -x^{2}-y^{2}+yc by -x.
x^{2}-xa+y\left(y-c\right)=0
Use the distributive property to multiply x by x-a.
x^{2}-xa+y^{2}-yc=0
Use the distributive property to multiply y by y-c.
-xa+y^{2}-yc=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
y^{2}-yc=-x^{2}+xa
Add xa to both sides.
-yc=-x^{2}+xa-y^{2}
Subtract y^{2} from both sides.
\left(-y\right)c=ax-y^{2}-x^{2}
The equation is in standard form.
\frac{\left(-y\right)c}{-y}=\frac{ax-y^{2}-x^{2}}{-y}
Divide both sides by -y.
c=\frac{ax-y^{2}-x^{2}}{-y}
Dividing by -y undoes the multiplication by -y.
c=\frac{x^{2}-ax}{y}+y
Divide -x^{2}+xa-y^{2} by -y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}