Solve for x
x=\sqrt{7}+2\approx 4.645751311
x=2-\sqrt{7}\approx -0.645751311
Graph
Share
Copied to clipboard
x^{2}-5x+2\left(x-1\right)=x+1
Use the distributive property to multiply x by x-5.
x^{2}-5x+2x-2=x+1
Use the distributive property to multiply 2 by x-1.
x^{2}-3x-2=x+1
Combine -5x and 2x to get -3x.
x^{2}-3x-2-x=1
Subtract x from both sides.
x^{2}-4x-2=1
Combine -3x and -x to get -4x.
x^{2}-4x-2-1=0
Subtract 1 from both sides.
x^{2}-4x-3=0
Subtract 1 from -2 to get -3.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-3\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-3\right)}}{2}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+12}}{2}
Multiply -4 times -3.
x=\frac{-\left(-4\right)±\sqrt{28}}{2}
Add 16 to 12.
x=\frac{-\left(-4\right)±2\sqrt{7}}{2}
Take the square root of 28.
x=\frac{4±2\sqrt{7}}{2}
The opposite of -4 is 4.
x=\frac{2\sqrt{7}+4}{2}
Now solve the equation x=\frac{4±2\sqrt{7}}{2} when ± is plus. Add 4 to 2\sqrt{7}.
x=\sqrt{7}+2
Divide 4+2\sqrt{7} by 2.
x=\frac{4-2\sqrt{7}}{2}
Now solve the equation x=\frac{4±2\sqrt{7}}{2} when ± is minus. Subtract 2\sqrt{7} from 4.
x=2-\sqrt{7}
Divide 4-2\sqrt{7} by 2.
x=\sqrt{7}+2 x=2-\sqrt{7}
The equation is now solved.
x^{2}-5x+2\left(x-1\right)=x+1
Use the distributive property to multiply x by x-5.
x^{2}-5x+2x-2=x+1
Use the distributive property to multiply 2 by x-1.
x^{2}-3x-2=x+1
Combine -5x and 2x to get -3x.
x^{2}-3x-2-x=1
Subtract x from both sides.
x^{2}-4x-2=1
Combine -3x and -x to get -4x.
x^{2}-4x=1+2
Add 2 to both sides.
x^{2}-4x=3
Add 1 and 2 to get 3.
x^{2}-4x+\left(-2\right)^{2}=3+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=3+4
Square -2.
x^{2}-4x+4=7
Add 3 to 4.
\left(x-2\right)^{2}=7
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{7}
Take the square root of both sides of the equation.
x-2=\sqrt{7} x-2=-\sqrt{7}
Simplify.
x=\sqrt{7}+2 x=2-\sqrt{7}
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}