Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-x-x\left(2x+1\right)=2\left(1+x\right)-5
Use the distributive property to multiply x by x-1.
x^{2}-x-\left(2x^{2}+x\right)=2\left(1+x\right)-5
Use the distributive property to multiply x by 2x+1.
x^{2}-x-2x^{2}-x=2\left(1+x\right)-5
To find the opposite of 2x^{2}+x, find the opposite of each term.
-x^{2}-x-x=2\left(1+x\right)-5
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-2x=2\left(1+x\right)-5
Combine -x and -x to get -2x.
-x^{2}-2x=2+2x-5
Use the distributive property to multiply 2 by 1+x.
-x^{2}-2x=-3+2x
Subtract 5 from 2 to get -3.
-x^{2}-2x-\left(-3\right)=2x
Subtract -3 from both sides.
-x^{2}-2x+3=2x
The opposite of -3 is 3.
-x^{2}-2x+3-2x=0
Subtract 2x from both sides.
-x^{2}-4x+3=0
Combine -2x and -2x to get -4x.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -4 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-1\right)\times 3}}{2\left(-1\right)}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+4\times 3}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-4\right)±\sqrt{16+12}}{2\left(-1\right)}
Multiply 4 times 3.
x=\frac{-\left(-4\right)±\sqrt{28}}{2\left(-1\right)}
Add 16 to 12.
x=\frac{-\left(-4\right)±2\sqrt{7}}{2\left(-1\right)}
Take the square root of 28.
x=\frac{4±2\sqrt{7}}{2\left(-1\right)}
The opposite of -4 is 4.
x=\frac{4±2\sqrt{7}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{7}+4}{-2}
Now solve the equation x=\frac{4±2\sqrt{7}}{-2} when ± is plus. Add 4 to 2\sqrt{7}.
x=-\left(\sqrt{7}+2\right)
Divide 4+2\sqrt{7} by -2.
x=\frac{4-2\sqrt{7}}{-2}
Now solve the equation x=\frac{4±2\sqrt{7}}{-2} when ± is minus. Subtract 2\sqrt{7} from 4.
x=\sqrt{7}-2
Divide 4-2\sqrt{7} by -2.
x=-\left(\sqrt{7}+2\right) x=\sqrt{7}-2
The equation is now solved.
x^{2}-x-x\left(2x+1\right)=2\left(1+x\right)-5
Use the distributive property to multiply x by x-1.
x^{2}-x-\left(2x^{2}+x\right)=2\left(1+x\right)-5
Use the distributive property to multiply x by 2x+1.
x^{2}-x-2x^{2}-x=2\left(1+x\right)-5
To find the opposite of 2x^{2}+x, find the opposite of each term.
-x^{2}-x-x=2\left(1+x\right)-5
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-2x=2\left(1+x\right)-5
Combine -x and -x to get -2x.
-x^{2}-2x=2+2x-5
Use the distributive property to multiply 2 by 1+x.
-x^{2}-2x=-3+2x
Subtract 5 from 2 to get -3.
-x^{2}-2x-2x=-3
Subtract 2x from both sides.
-x^{2}-4x=-3
Combine -2x and -2x to get -4x.
\frac{-x^{2}-4x}{-1}=-\frac{3}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{4}{-1}\right)x=-\frac{3}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+4x=-\frac{3}{-1}
Divide -4 by -1.
x^{2}+4x=3
Divide -3 by -1.
x^{2}+4x+2^{2}=3+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=3+4
Square 2.
x^{2}+4x+4=7
Add 3 to 4.
\left(x+2\right)^{2}=7
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{7}
Take the square root of both sides of the equation.
x+2=\sqrt{7} x+2=-\sqrt{7}
Simplify.
x=\sqrt{7}-2 x=-\sqrt{7}-2
Subtract 2 from both sides of the equation.