Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-x-\left(x-\frac{1}{3}\right)\left(x+\frac{1}{3}\right)
Use the distributive property to multiply x by x-1.
x^{2}-x-\left(x^{2}-\left(\frac{1}{3}\right)^{2}\right)
Consider \left(x-\frac{1}{3}\right)\left(x+\frac{1}{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-x-\left(x^{2}-\frac{1}{9}\right)
Calculate \frac{1}{3} to the power of 2 and get \frac{1}{9}.
x^{2}-x-x^{2}-\left(-\frac{1}{9}\right)
To find the opposite of x^{2}-\frac{1}{9}, find the opposite of each term.
x^{2}-x-x^{2}+\frac{1}{9}
The opposite of -\frac{1}{9} is \frac{1}{9}.
-x+\frac{1}{9}
Combine x^{2} and -x^{2} to get 0.
x^{2}-x-\left(x-\frac{1}{3}\right)\left(x+\frac{1}{3}\right)
Use the distributive property to multiply x by x-1.
x^{2}-x-\left(x^{2}-\left(\frac{1}{3}\right)^{2}\right)
Consider \left(x-\frac{1}{3}\right)\left(x+\frac{1}{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-x-\left(x^{2}-\frac{1}{9}\right)
Calculate \frac{1}{3} to the power of 2 and get \frac{1}{9}.
x^{2}-x-x^{2}-\left(-\frac{1}{9}\right)
To find the opposite of x^{2}-\frac{1}{9}, find the opposite of each term.
x^{2}-x-x^{2}+\frac{1}{9}
The opposite of -\frac{1}{9} is \frac{1}{9}.
-x+\frac{1}{9}
Combine x^{2} and -x^{2} to get 0.