Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x^{2}-x\right)\left(x-3\right)=\left(x+1\right)\left(x+2\right)\left(x+4\right)+3
Use the distributive property to multiply x by x-1.
x^{3}-4x^{2}+3x=\left(x+1\right)\left(x+2\right)\left(x+4\right)+3
Use the distributive property to multiply x^{2}-x by x-3 and combine like terms.
x^{3}-4x^{2}+3x=\left(x^{2}+3x+2\right)\left(x+4\right)+3
Use the distributive property to multiply x+1 by x+2 and combine like terms.
x^{3}-4x^{2}+3x=x^{3}+7x^{2}+14x+8+3
Use the distributive property to multiply x^{2}+3x+2 by x+4 and combine like terms.
x^{3}-4x^{2}+3x=x^{3}+7x^{2}+14x+11
Add 8 and 3 to get 11.
x^{3}-4x^{2}+3x-x^{3}=7x^{2}+14x+11
Subtract x^{3} from both sides.
-4x^{2}+3x=7x^{2}+14x+11
Combine x^{3} and -x^{3} to get 0.
-4x^{2}+3x-7x^{2}=14x+11
Subtract 7x^{2} from both sides.
-11x^{2}+3x=14x+11
Combine -4x^{2} and -7x^{2} to get -11x^{2}.
-11x^{2}+3x-14x=11
Subtract 14x from both sides.
-11x^{2}-11x=11
Combine 3x and -14x to get -11x.
-11x^{2}-11x-11=0
Subtract 11 from both sides.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-11\right)\left(-11\right)}}{2\left(-11\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -11 for a, -11 for b, and -11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\left(-11\right)\left(-11\right)}}{2\left(-11\right)}
Square -11.
x=\frac{-\left(-11\right)±\sqrt{121+44\left(-11\right)}}{2\left(-11\right)}
Multiply -4 times -11.
x=\frac{-\left(-11\right)±\sqrt{121-484}}{2\left(-11\right)}
Multiply 44 times -11.
x=\frac{-\left(-11\right)±\sqrt{-363}}{2\left(-11\right)}
Add 121 to -484.
x=\frac{-\left(-11\right)±11\sqrt{3}i}{2\left(-11\right)}
Take the square root of -363.
x=\frac{11±11\sqrt{3}i}{2\left(-11\right)}
The opposite of -11 is 11.
x=\frac{11±11\sqrt{3}i}{-22}
Multiply 2 times -11.
x=\frac{11+11\sqrt{3}i}{-22}
Now solve the equation x=\frac{11±11\sqrt{3}i}{-22} when ± is plus. Add 11 to 11i\sqrt{3}.
x=\frac{-\sqrt{3}i-1}{2}
Divide 11+11i\sqrt{3} by -22.
x=\frac{-11\sqrt{3}i+11}{-22}
Now solve the equation x=\frac{11±11\sqrt{3}i}{-22} when ± is minus. Subtract 11i\sqrt{3} from 11.
x=\frac{-1+\sqrt{3}i}{2}
Divide 11-11i\sqrt{3} by -22.
x=\frac{-\sqrt{3}i-1}{2} x=\frac{-1+\sqrt{3}i}{2}
The equation is now solved.
\left(x^{2}-x\right)\left(x-3\right)=\left(x+1\right)\left(x+2\right)\left(x+4\right)+3
Use the distributive property to multiply x by x-1.
x^{3}-4x^{2}+3x=\left(x+1\right)\left(x+2\right)\left(x+4\right)+3
Use the distributive property to multiply x^{2}-x by x-3 and combine like terms.
x^{3}-4x^{2}+3x=\left(x^{2}+3x+2\right)\left(x+4\right)+3
Use the distributive property to multiply x+1 by x+2 and combine like terms.
x^{3}-4x^{2}+3x=x^{3}+7x^{2}+14x+8+3
Use the distributive property to multiply x^{2}+3x+2 by x+4 and combine like terms.
x^{3}-4x^{2}+3x=x^{3}+7x^{2}+14x+11
Add 8 and 3 to get 11.
x^{3}-4x^{2}+3x-x^{3}=7x^{2}+14x+11
Subtract x^{3} from both sides.
-4x^{2}+3x=7x^{2}+14x+11
Combine x^{3} and -x^{3} to get 0.
-4x^{2}+3x-7x^{2}=14x+11
Subtract 7x^{2} from both sides.
-11x^{2}+3x=14x+11
Combine -4x^{2} and -7x^{2} to get -11x^{2}.
-11x^{2}+3x-14x=11
Subtract 14x from both sides.
-11x^{2}-11x=11
Combine 3x and -14x to get -11x.
\frac{-11x^{2}-11x}{-11}=\frac{11}{-11}
Divide both sides by -11.
x^{2}+\left(-\frac{11}{-11}\right)x=\frac{11}{-11}
Dividing by -11 undoes the multiplication by -11.
x^{2}+x=\frac{11}{-11}
Divide -11 by -11.
x^{2}+x=-1
Divide 11 by -11.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-1+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=-1+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=-\frac{3}{4}
Add -1 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=-\frac{3}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{\sqrt{3}i}{2} x+\frac{1}{2}=-\frac{\sqrt{3}i}{2}
Simplify.
x=\frac{-1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-1}{2}
Subtract \frac{1}{2} from both sides of the equation.