Skip to main content
Solve for K
Tick mark Image

Similar Problems from Web Search

Share

\left(x^{2}+xy\right)y-x^{2}=K\left(x^{3}+y^{3}\right)
Use the distributive property to multiply x by x+y.
x^{2}y+xy^{2}-x^{2}=K\left(x^{3}+y^{3}\right)
Use the distributive property to multiply x^{2}+xy by y.
x^{2}y+xy^{2}-x^{2}=Kx^{3}+Ky^{3}
Use the distributive property to multiply K by x^{3}+y^{3}.
Kx^{3}+Ky^{3}=x^{2}y+xy^{2}-x^{2}
Swap sides so that all variable terms are on the left hand side.
\left(x^{3}+y^{3}\right)K=x^{2}y+xy^{2}-x^{2}
Combine all terms containing K.
\left(x^{3}+y^{3}\right)K=yx^{2}+xy^{2}-x^{2}
The equation is in standard form.
\frac{\left(x^{3}+y^{3}\right)K}{x^{3}+y^{3}}=\frac{x\left(xy-x+y^{2}\right)}{x^{3}+y^{3}}
Divide both sides by x^{3}+y^{3}.
K=\frac{x\left(xy-x+y^{2}\right)}{x^{3}+y^{3}}
Dividing by x^{3}+y^{3} undoes the multiplication by x^{3}+y^{3}.
K=\frac{x\left(xy-x+y^{2}\right)}{\left(x+y\right)\left(x^{2}-xy+y^{2}\right)}
Divide x\left(-x+y^{2}+yx\right) by x^{3}+y^{3}.