Evaluate
6\left(x+2\right)
Expand
6x+12
Graph
Share
Copied to clipboard
x^{2}+3x+3x+3-x\left(x-3\right)-3\left(x-3\right)
Use the distributive property to multiply x by x+3.
x^{2}+6x+3-x\left(x-3\right)-3\left(x-3\right)
Combine 3x and 3x to get 6x.
x^{2}+6x+3-\left(x^{2}-3x\right)-3\left(x-3\right)
Use the distributive property to multiply x by x-3.
x^{2}+6x+3-x^{2}-\left(-3x\right)-3\left(x-3\right)
To find the opposite of x^{2}-3x, find the opposite of each term.
x^{2}+6x+3-x^{2}+3x-3\left(x-3\right)
The opposite of -3x is 3x.
6x+3+3x-3\left(x-3\right)
Combine x^{2} and -x^{2} to get 0.
9x+3-3\left(x-3\right)
Combine 6x and 3x to get 9x.
9x+3-3x+9
Use the distributive property to multiply -3 by x-3.
6x+3+9
Combine 9x and -3x to get 6x.
6x+12
Add 3 and 9 to get 12.
x^{2}+3x+3x+3-x\left(x-3\right)-3\left(x-3\right)
Use the distributive property to multiply x by x+3.
x^{2}+6x+3-x\left(x-3\right)-3\left(x-3\right)
Combine 3x and 3x to get 6x.
x^{2}+6x+3-\left(x^{2}-3x\right)-3\left(x-3\right)
Use the distributive property to multiply x by x-3.
x^{2}+6x+3-x^{2}-\left(-3x\right)-3\left(x-3\right)
To find the opposite of x^{2}-3x, find the opposite of each term.
x^{2}+6x+3-x^{2}+3x-3\left(x-3\right)
The opposite of -3x is 3x.
6x+3+3x-3\left(x-3\right)
Combine x^{2} and -x^{2} to get 0.
9x+3-3\left(x-3\right)
Combine 6x and 3x to get 9x.
9x+3-3x+9
Use the distributive property to multiply -3 by x-3.
6x+3+9
Combine 9x and -3x to get 6x.
6x+12
Add 3 and 9 to get 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}