Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+3x+21=0
Use the distributive property to multiply x by x+3.
x=\frac{-3±\sqrt{3^{2}-4\times 21}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 3 for b, and 21 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 21}}{2}
Square 3.
x=\frac{-3±\sqrt{9-84}}{2}
Multiply -4 times 21.
x=\frac{-3±\sqrt{-75}}{2}
Add 9 to -84.
x=\frac{-3±5\sqrt{3}i}{2}
Take the square root of -75.
x=\frac{-3+5\sqrt{3}i}{2}
Now solve the equation x=\frac{-3±5\sqrt{3}i}{2} when ± is plus. Add -3 to 5i\sqrt{3}.
x=\frac{-5\sqrt{3}i-3}{2}
Now solve the equation x=\frac{-3±5\sqrt{3}i}{2} when ± is minus. Subtract 5i\sqrt{3} from -3.
x=\frac{-3+5\sqrt{3}i}{2} x=\frac{-5\sqrt{3}i-3}{2}
The equation is now solved.
x^{2}+3x+21=0
Use the distributive property to multiply x by x+3.
x^{2}+3x=-21
Subtract 21 from both sides. Anything subtracted from zero gives its negation.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-21+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=-21+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=-\frac{75}{4}
Add -21 to \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=-\frac{75}{4}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{-\frac{75}{4}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{5\sqrt{3}i}{2} x+\frac{3}{2}=-\frac{5\sqrt{3}i}{2}
Simplify.
x=\frac{-3+5\sqrt{3}i}{2} x=\frac{-5\sqrt{3}i-3}{2}
Subtract \frac{3}{2} from both sides of the equation.