Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

2+\frac{-6s+1}{\left(s+1\right)\left(s+2\right)}
Factor s^{2}+3s+2.
\frac{2\left(s+1\right)\left(s+2\right)}{\left(s+1\right)\left(s+2\right)}+\frac{-6s+1}{\left(s+1\right)\left(s+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{\left(s+1\right)\left(s+2\right)}{\left(s+1\right)\left(s+2\right)}.
\frac{2\left(s+1\right)\left(s+2\right)-6s+1}{\left(s+1\right)\left(s+2\right)}
Since \frac{2\left(s+1\right)\left(s+2\right)}{\left(s+1\right)\left(s+2\right)} and \frac{-6s+1}{\left(s+1\right)\left(s+2\right)} have the same denominator, add them by adding their numerators.
\frac{2s^{2}+4s+2s+4-6s+1}{\left(s+1\right)\left(s+2\right)}
Do the multiplications in 2\left(s+1\right)\left(s+2\right)-6s+1.
\frac{2s^{2}+5}{\left(s+1\right)\left(s+2\right)}
Combine like terms in 2s^{2}+4s+2s+4-6s+1.
\frac{2s^{2}+5}{s^{2}+3s+2}
Expand \left(s+1\right)\left(s+2\right).
2+\frac{-6s+1}{\left(s+1\right)\left(s+2\right)}
Factor s^{2}+3s+2.
\frac{2\left(s+1\right)\left(s+2\right)}{\left(s+1\right)\left(s+2\right)}+\frac{-6s+1}{\left(s+1\right)\left(s+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{\left(s+1\right)\left(s+2\right)}{\left(s+1\right)\left(s+2\right)}.
\frac{2\left(s+1\right)\left(s+2\right)-6s+1}{\left(s+1\right)\left(s+2\right)}
Since \frac{2\left(s+1\right)\left(s+2\right)}{\left(s+1\right)\left(s+2\right)} and \frac{-6s+1}{\left(s+1\right)\left(s+2\right)} have the same denominator, add them by adding their numerators.
\frac{2s^{2}+4s+2s+4-6s+1}{\left(s+1\right)\left(s+2\right)}
Do the multiplications in 2\left(s+1\right)\left(s+2\right)-6s+1.
\frac{2s^{2}+5}{\left(s+1\right)\left(s+2\right)}
Combine like terms in 2s^{2}+4s+2s+4-6s+1.
\frac{2s^{2}+5}{s^{2}+3s+2}
Expand \left(s+1\right)\left(s+2\right).