Solve for x
x=35
Graph
Share
Copied to clipboard
65x-x^{2}+3x-2\left(65-x\right)-6=1089
Use the distributive property to multiply x by 65-x.
68x-x^{2}-2\left(65-x\right)-6=1089
Combine 65x and 3x to get 68x.
68x-x^{2}-130+2x-6=1089
Use the distributive property to multiply -2 by 65-x.
70x-x^{2}-130-6=1089
Combine 68x and 2x to get 70x.
70x-x^{2}-136=1089
Subtract 6 from -130 to get -136.
70x-x^{2}-136-1089=0
Subtract 1089 from both sides.
70x-x^{2}-1225=0
Subtract 1089 from -136 to get -1225.
-x^{2}+70x-1225=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-70±\sqrt{70^{2}-4\left(-1\right)\left(-1225\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 70 for b, and -1225 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-70±\sqrt{4900-4\left(-1\right)\left(-1225\right)}}{2\left(-1\right)}
Square 70.
x=\frac{-70±\sqrt{4900+4\left(-1225\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-70±\sqrt{4900-4900}}{2\left(-1\right)}
Multiply 4 times -1225.
x=\frac{-70±\sqrt{0}}{2\left(-1\right)}
Add 4900 to -4900.
x=-\frac{70}{2\left(-1\right)}
Take the square root of 0.
x=-\frac{70}{-2}
Multiply 2 times -1.
x=35
Divide -70 by -2.
65x-x^{2}+3x-2\left(65-x\right)-6=1089
Use the distributive property to multiply x by 65-x.
68x-x^{2}-2\left(65-x\right)-6=1089
Combine 65x and 3x to get 68x.
68x-x^{2}-130+2x-6=1089
Use the distributive property to multiply -2 by 65-x.
70x-x^{2}-130-6=1089
Combine 68x and 2x to get 70x.
70x-x^{2}-136=1089
Subtract 6 from -130 to get -136.
70x-x^{2}=1089+136
Add 136 to both sides.
70x-x^{2}=1225
Add 1089 and 136 to get 1225.
-x^{2}+70x=1225
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+70x}{-1}=\frac{1225}{-1}
Divide both sides by -1.
x^{2}+\frac{70}{-1}x=\frac{1225}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-70x=\frac{1225}{-1}
Divide 70 by -1.
x^{2}-70x=-1225
Divide 1225 by -1.
x^{2}-70x+\left(-35\right)^{2}=-1225+\left(-35\right)^{2}
Divide -70, the coefficient of the x term, by 2 to get -35. Then add the square of -35 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-70x+1225=-1225+1225
Square -35.
x^{2}-70x+1225=0
Add -1225 to 1225.
\left(x-35\right)^{2}=0
Factor x^{2}-70x+1225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-35\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-35=0 x-35=0
Simplify.
x=35 x=35
Add 35 to both sides of the equation.
x=35
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}