Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x-x^{2}-\left(x-3\right)\left(x+3\right)+x\left(x-6\right)
Use the distributive property to multiply x by 4-x.
4x-x^{2}-\left(x^{2}-3^{2}\right)+x\left(x-6\right)
Consider \left(x-3\right)\left(x+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4x-x^{2}-\left(x^{2}-9\right)+x\left(x-6\right)
Calculate 3 to the power of 2 and get 9.
4x-x^{2}-x^{2}-\left(-9\right)+x\left(x-6\right)
To find the opposite of x^{2}-9, find the opposite of each term.
4x-x^{2}-x^{2}+9+x\left(x-6\right)
The opposite of -9 is 9.
4x-2x^{2}+9+x\left(x-6\right)
Combine -x^{2} and -x^{2} to get -2x^{2}.
4x-2x^{2}+9+x^{2}-6x
Use the distributive property to multiply x by x-6.
4x-x^{2}+9-6x
Combine -2x^{2} and x^{2} to get -x^{2}.
-2x-x^{2}+9
Combine 4x and -6x to get -2x.
4x-x^{2}-\left(x-3\right)\left(x+3\right)+x\left(x-6\right)
Use the distributive property to multiply x by 4-x.
4x-x^{2}-\left(x^{2}-3^{2}\right)+x\left(x-6\right)
Consider \left(x-3\right)\left(x+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4x-x^{2}-\left(x^{2}-9\right)+x\left(x-6\right)
Calculate 3 to the power of 2 and get 9.
4x-x^{2}-x^{2}-\left(-9\right)+x\left(x-6\right)
To find the opposite of x^{2}-9, find the opposite of each term.
4x-x^{2}-x^{2}+9+x\left(x-6\right)
The opposite of -9 is 9.
4x-2x^{2}+9+x\left(x-6\right)
Combine -x^{2} and -x^{2} to get -2x^{2}.
4x-2x^{2}+9+x^{2}-6x
Use the distributive property to multiply x by x-6.
4x-x^{2}+9-6x
Combine -2x^{2} and x^{2} to get -x^{2}.
-2x-x^{2}+9
Combine 4x and -6x to get -2x.