Solve for p (complex solution)
\left\{\begin{matrix}p=\frac{3bx+x+b^{2}-1}{2x}\text{, }&x\neq 0\\p\in \mathrm{C}\text{, }&\left(b=-1\text{ or }b=1\right)\text{ and }x=0\end{matrix}\right.
Solve for p
\left\{\begin{matrix}p=\frac{3bx+x+b^{2}-1}{2x}\text{, }&x\neq 0\\p\in \mathrm{R}\text{, }&x=0\text{ and }|b|=1\end{matrix}\right.
Solve for b (complex solution)
b=\frac{\sqrt{9x^{2}+8px-4x+4}-3x}{2}
b=\frac{-\sqrt{9x^{2}+8px-4x+4}-3x}{2}
Solve for b
b=\frac{\sqrt{9x^{2}+8px-4x+4}-3x}{2}
b=\frac{-\sqrt{9x^{2}+8px-4x+4}-3x}{2}\text{, }\left(p>-1\text{ and }p<2\right)\text{ or }x\geq \frac{2\sqrt{\left(2p-1\right)^{2}-9}-4p+2}{9}\text{ or }x\leq \frac{-2\sqrt{\left(2p-1\right)^{2}-9}-4p+2}{9}\text{ or }\left(p\geq -1\text{ and }p\leq 2\right)
Graph
Share
Copied to clipboard
3x-2xp-1=x\left(2-3b\right)-b^{2}
Use the distributive property to multiply x by 3-2p.
3x-2xp-1=2x-3xb-b^{2}
Use the distributive property to multiply x by 2-3b.
-2xp-1=2x-3xb-b^{2}-3x
Subtract 3x from both sides.
-2xp-1=-x-3xb-b^{2}
Combine 2x and -3x to get -x.
-2xp=-x-3xb-b^{2}+1
Add 1 to both sides.
\left(-2x\right)p=1-b^{2}-x-3bx
The equation is in standard form.
\frac{\left(-2x\right)p}{-2x}=\frac{1-b^{2}-x-3bx}{-2x}
Divide both sides by -2x.
p=\frac{1-b^{2}-x-3bx}{-2x}
Dividing by -2x undoes the multiplication by -2x.
p=\frac{b^{2}-1}{2x}+\frac{3b}{2}+\frac{1}{2}
Divide -x-3xb-b^{2}+1 by -2x.
3x-2xp-1=x\left(2-3b\right)-b^{2}
Use the distributive property to multiply x by 3-2p.
3x-2xp-1=2x-3xb-b^{2}
Use the distributive property to multiply x by 2-3b.
-2xp-1=2x-3xb-b^{2}-3x
Subtract 3x from both sides.
-2xp-1=-x-3xb-b^{2}
Combine 2x and -3x to get -x.
-2xp=-x-3xb-b^{2}+1
Add 1 to both sides.
\left(-2x\right)p=1-b^{2}-x-3bx
The equation is in standard form.
\frac{\left(-2x\right)p}{-2x}=\frac{1-b^{2}-x-3bx}{-2x}
Divide both sides by -2x.
p=\frac{1-b^{2}-x-3bx}{-2x}
Dividing by -2x undoes the multiplication by -2x.
p=\frac{b^{2}-1}{2x}+\frac{3b}{2}+\frac{1}{2}
Divide -x-3xb-b^{2}+1 by -2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}