Solve for x (complex solution)
x=\frac{1}{b^{2}+b+1}
b\neq \frac{-1+\sqrt{3}i}{2}\text{ and }b\neq \frac{-\sqrt{3}i-1}{2}
Solve for x
x=\frac{1}{b^{2}+b+1}
Solve for b (complex solution)
b=\frac{\sqrt{4x-3x^{2}}}{2x}-\frac{1}{2}
b=-\frac{\sqrt{4x-3x^{2}}}{2x}-\frac{1}{2}\text{, }x\neq 0
Solve for b
b=\frac{\sqrt{-3+\frac{4}{x}}-1}{2}
b=\frac{-\sqrt{-3+\frac{4}{x}}-1}{2}\text{, }x>0\text{ and }x\leq \frac{4}{3}
Graph
Share
Copied to clipboard
3x-2xb-1=x\left(2-3b-b^{2}\right)
Use the distributive property to multiply x by 3-2b.
3x-2xb-1=2x-3xb-xb^{2}
Use the distributive property to multiply x by 2-3b-b^{2}.
3x-2xb-1-2x=-3xb-xb^{2}
Subtract 2x from both sides.
x-2xb-1=-3xb-xb^{2}
Combine 3x and -2x to get x.
x-2xb-1+3xb=-xb^{2}
Add 3xb to both sides.
x+xb-1=-xb^{2}
Combine -2xb and 3xb to get xb.
x+xb-1+xb^{2}=0
Add xb^{2} to both sides.
x+xb+xb^{2}=1
Add 1 to both sides. Anything plus zero gives itself.
\left(1+b+b^{2}\right)x=1
Combine all terms containing x.
\left(b^{2}+b+1\right)x=1
The equation is in standard form.
\frac{\left(b^{2}+b+1\right)x}{b^{2}+b+1}=\frac{1}{b^{2}+b+1}
Divide both sides by 1+b+b^{2}.
x=\frac{1}{b^{2}+b+1}
Dividing by 1+b+b^{2} undoes the multiplication by 1+b+b^{2}.
3x-2xb-1=x\left(2-3b-b^{2}\right)
Use the distributive property to multiply x by 3-2b.
3x-2xb-1=2x-3xb-xb^{2}
Use the distributive property to multiply x by 2-3b-b^{2}.
3x-2xb-1-2x=-3xb-xb^{2}
Subtract 2x from both sides.
x-2xb-1=-3xb-xb^{2}
Combine 3x and -2x to get x.
x-2xb-1+3xb=-xb^{2}
Add 3xb to both sides.
x+xb-1=-xb^{2}
Combine -2xb and 3xb to get xb.
x+xb-1+xb^{2}=0
Add xb^{2} to both sides.
x+xb+xb^{2}=1
Add 1 to both sides. Anything plus zero gives itself.
\left(1+b+b^{2}\right)x=1
Combine all terms containing x.
\left(b^{2}+b+1\right)x=1
The equation is in standard form.
\frac{\left(b^{2}+b+1\right)x}{b^{2}+b+1}=\frac{1}{b^{2}+b+1}
Divide both sides by 1+b+b^{2}.
x=\frac{1}{b^{2}+b+1}
Dividing by 1+b+b^{2} undoes the multiplication by 1+b+b^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}