Skip to main content
Solve for x
Tick mark Image
Graph

Share

x\left(2+\frac{16+24m^{2}-9m^{4}}{2\left(3m^{2}+4\right)}\right)\left(6m^{2}+8\right)\times 2=2m\left(3m^{2}+4\right)\sqrt{6}
Multiply both sides of the equation by 2m\left(3m^{2}+4\right), the least common multiple of 2\left(3m^{2}+4\right),m,2.
x\left(\frac{2\times 2\left(3m^{2}+4\right)}{2\left(3m^{2}+4\right)}+\frac{16+24m^{2}-9m^{4}}{2\left(3m^{2}+4\right)}\right)\left(6m^{2}+8\right)\times 2=2m\left(3m^{2}+4\right)\sqrt{6}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{2\left(3m^{2}+4\right)}{2\left(3m^{2}+4\right)}.
x\times \frac{2\times 2\left(3m^{2}+4\right)+16+24m^{2}-9m^{4}}{2\left(3m^{2}+4\right)}\left(6m^{2}+8\right)\times 2=2m\left(3m^{2}+4\right)\sqrt{6}
Since \frac{2\times 2\left(3m^{2}+4\right)}{2\left(3m^{2}+4\right)} and \frac{16+24m^{2}-9m^{4}}{2\left(3m^{2}+4\right)} have the same denominator, add them by adding their numerators.
x\times \frac{12m^{2}+16+16+24m^{2}-9m^{4}}{2\left(3m^{2}+4\right)}\left(6m^{2}+8\right)\times 2=2m\left(3m^{2}+4\right)\sqrt{6}
Do the multiplications in 2\times 2\left(3m^{2}+4\right)+16+24m^{2}-9m^{4}.
x\times \frac{36m^{2}+32-9m^{4}}{2\left(3m^{2}+4\right)}\left(6m^{2}+8\right)\times 2=2m\left(3m^{2}+4\right)\sqrt{6}
Combine like terms in 12m^{2}+16+16+24m^{2}-9m^{4}.
\frac{x\left(36m^{2}+32-9m^{4}\right)}{2\left(3m^{2}+4\right)}\left(6m^{2}+8\right)\times 2=2m\left(3m^{2}+4\right)\sqrt{6}
Express x\times \frac{36m^{2}+32-9m^{4}}{2\left(3m^{2}+4\right)} as a single fraction.
\frac{x\left(36m^{2}+32-9m^{4}\right)\left(6m^{2}+8\right)}{2\left(3m^{2}+4\right)}\times 2=2m\left(3m^{2}+4\right)\sqrt{6}
Express \frac{x\left(36m^{2}+32-9m^{4}\right)}{2\left(3m^{2}+4\right)}\left(6m^{2}+8\right) as a single fraction.
\frac{x\left(36m^{2}+32-9m^{4}\right)\left(6m^{2}+8\right)\times 2}{2\left(3m^{2}+4\right)}=2m\left(3m^{2}+4\right)\sqrt{6}
Express \frac{x\left(36m^{2}+32-9m^{4}\right)\left(6m^{2}+8\right)}{2\left(3m^{2}+4\right)}\times 2 as a single fraction.
\frac{x\left(6m^{2}+8\right)\left(-9m^{4}+36m^{2}+32\right)}{3m^{2}+4}=2m\left(3m^{2}+4\right)\sqrt{6}
Cancel out 2 in both numerator and denominator.
\frac{x\left(6m^{2}+8\right)\left(-9m^{4}+36m^{2}+32\right)}{3m^{2}+4}=\left(6m^{3}+8m\right)\sqrt{6}
Use the distributive property to multiply 2m by 3m^{2}+4.
\frac{x\left(6m^{2}+8\right)\left(-9m^{4}+36m^{2}+32\right)}{3m^{2}+4}=6m^{3}\sqrt{6}+8m\sqrt{6}
Use the distributive property to multiply 6m^{3}+8m by \sqrt{6}.
\frac{-2\times 9x\left(3m^{2}+4\right)\left(m^{2}-\left(-\frac{2}{3}\sqrt{17}+2\right)\right)\left(m^{2}-\left(\frac{2}{3}\sqrt{17}+2\right)\right)}{3m^{2}+4}=6m^{3}\sqrt{6}+8m\sqrt{6}
Factor the expressions that are not already factored in \frac{x\left(6m^{2}+8\right)\left(-9m^{4}+36m^{2}+32\right)}{3m^{2}+4}.
-2\times 9x\left(m^{2}-\left(-\frac{2}{3}\sqrt{17}+2\right)\right)\left(m^{2}-\left(\frac{2}{3}\sqrt{17}+2\right)\right)=6m^{3}\sqrt{6}+8m\sqrt{6}
Cancel out 3m^{2}+4 in both numerator and denominator.
-18xm^{4}+72xm^{2}+64x=6m^{3}\sqrt{6}+8m\sqrt{6}
Expand the expression.
\left(-18m^{4}+72m^{2}+64\right)x=6m^{3}\sqrt{6}+8m\sqrt{6}
Combine all terms containing x.
\left(64+72m^{2}-18m^{4}\right)x=6\sqrt{6}m^{3}+8\sqrt{6}m
The equation is in standard form.
\frac{\left(64+72m^{2}-18m^{4}\right)x}{64+72m^{2}-18m^{4}}=\frac{2\sqrt{6}m\left(3m^{2}+4\right)}{64+72m^{2}-18m^{4}}
Divide both sides by -18m^{4}+72m^{2}+64.
x=\frac{2\sqrt{6}m\left(3m^{2}+4\right)}{64+72m^{2}-18m^{4}}
Dividing by -18m^{4}+72m^{2}+64 undoes the multiplication by -18m^{4}+72m^{2}+64.
x=\frac{\sqrt{6}m\left(3m^{2}+4\right)}{32+36m^{2}-9m^{4}}
Divide 2m\left(3m^{2}+4\right)\sqrt{6} by -18m^{4}+72m^{2}+64.