Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{25\left(441a^{2}+452\right)}{\left(ay+1\right)^{2}}\text{, }&y=0\text{ or }a\neq -\frac{1}{y}\\x\in \mathrm{C}\text{, }&\left(y=\frac{21\sqrt{113}i}{226}\text{ and }a=\frac{2\sqrt{113}i}{21}\right)\text{ or }\left(y=-\frac{21\sqrt{113}i}{226}\text{ and }a=-\frac{2\sqrt{113}i}{21}\right)\end{matrix}\right.
Solve for x
x=\frac{25\left(441a^{2}+452\right)}{\left(ay+1\right)^{2}}
y=0\text{ or }a\neq -\frac{1}{y}
Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{-xy+5\sqrt{452xy^{2}+441x-4983300}}{xy^{2}-11025}\text{; }a=-\frac{xy+5\sqrt{452xy^{2}+441x-4983300}}{xy^{2}-11025}\text{, }&y=0\text{ or }x\neq \frac{11025}{y^{2}}\\a=-\frac{x-11300}{2xy}\text{, }&x=\frac{11025}{y^{2}}\text{ and }y\neq 0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{-xy+5\sqrt{452xy^{2}+441x-4983300}}{xy^{2}-11025}\text{; }a=-\frac{xy+5\sqrt{452xy^{2}+441x-4983300}}{xy^{2}-11025}\text{, }&\left(x\neq \frac{11025}{y^{2}}\text{ and }x\geq \frac{4983300}{452y^{2}+441}\right)\text{ or }\left(y=0\text{ and }x\geq 11300\right)\\a=-\frac{x-11300}{2xy}\text{, }&x=\frac{11025}{y^{2}}\text{ and }y\neq 0\end{matrix}\right.
Graph
Quiz
Algebra
5 problems similar to:
x ( 1 + a y ) ^ { 2 } = 11025 ( 1 + a ^ { 2 } ) ( 1 ) + 11 \cdot 25
Share
Copied to clipboard
x\left(1+2ay+a^{2}y^{2}\right)=11025\left(1+a^{2}\right)\times 1+11\times 25
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(1+ay\right)^{2}.
x+2xay+xa^{2}y^{2}=11025\left(1+a^{2}\right)\times 1+11\times 25
Use the distributive property to multiply x by 1+2ay+a^{2}y^{2}.
x+2xay+xa^{2}y^{2}=11025\left(1+a^{2}\right)+11\times 25
Multiply 11025 and 1 to get 11025.
x+2xay+xa^{2}y^{2}=11025+11025a^{2}+11\times 25
Use the distributive property to multiply 11025 by 1+a^{2}.
x+2xay+xa^{2}y^{2}=11025+11025a^{2}+275
Multiply 11 and 25 to get 275.
x+2xay+xa^{2}y^{2}=11300+11025a^{2}
Add 11025 and 275 to get 11300.
\left(1+2ay+a^{2}y^{2}\right)x=11300+11025a^{2}
Combine all terms containing x.
\left(a^{2}y^{2}+2ay+1\right)x=11025a^{2}+11300
The equation is in standard form.
\frac{\left(a^{2}y^{2}+2ay+1\right)x}{a^{2}y^{2}+2ay+1}=\frac{11025a^{2}+11300}{a^{2}y^{2}+2ay+1}
Divide both sides by 1+2ay+a^{2}y^{2}.
x=\frac{11025a^{2}+11300}{a^{2}y^{2}+2ay+1}
Dividing by 1+2ay+a^{2}y^{2} undoes the multiplication by 1+2ay+a^{2}y^{2}.
x=\frac{25\left(441a^{2}+452\right)}{\left(ay+1\right)^{2}}
Divide 11300+11025a^{2} by 1+2ay+a^{2}y^{2}.
x\left(1+2ay+a^{2}y^{2}\right)=11025\left(1+a^{2}\right)\times 1+11\times 25
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(1+ay\right)^{2}.
x+2xay+xa^{2}y^{2}=11025\left(1+a^{2}\right)\times 1+11\times 25
Use the distributive property to multiply x by 1+2ay+a^{2}y^{2}.
x+2xay+xa^{2}y^{2}=11025\left(1+a^{2}\right)+11\times 25
Multiply 11025 and 1 to get 11025.
x+2xay+xa^{2}y^{2}=11025+11025a^{2}+11\times 25
Use the distributive property to multiply 11025 by 1+a^{2}.
x+2xay+xa^{2}y^{2}=11025+11025a^{2}+275
Multiply 11 and 25 to get 275.
x+2xay+xa^{2}y^{2}=11300+11025a^{2}
Add 11025 and 275 to get 11300.
\left(1+2ay+a^{2}y^{2}\right)x=11300+11025a^{2}
Combine all terms containing x.
\left(a^{2}y^{2}+2ay+1\right)x=11025a^{2}+11300
The equation is in standard form.
\frac{\left(a^{2}y^{2}+2ay+1\right)x}{a^{2}y^{2}+2ay+1}=\frac{11025a^{2}+11300}{a^{2}y^{2}+2ay+1}
Divide both sides by 1+2ay+a^{2}y^{2}.
x=\frac{11025a^{2}+11300}{a^{2}y^{2}+2ay+1}
Dividing by 1+2ay+a^{2}y^{2} undoes the multiplication by 1+2ay+a^{2}y^{2}.
x=\frac{25\left(441a^{2}+452\right)}{\left(ay+1\right)^{2}}
Divide 11300+11025a^{2} by 1+2ay+a^{2}y^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}