Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Solve for a (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(1+2ay+a^{2}y^{2}\right)=11025\left(1+a^{2}\right)\times 1+11\times 25
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(1+ay\right)^{2}.
x+2xay+xa^{2}y^{2}=11025\left(1+a^{2}\right)\times 1+11\times 25
Use the distributive property to multiply x by 1+2ay+a^{2}y^{2}.
x+2xay+xa^{2}y^{2}=11025\left(1+a^{2}\right)+11\times 25
Multiply 11025 and 1 to get 11025.
x+2xay+xa^{2}y^{2}=11025+11025a^{2}+11\times 25
Use the distributive property to multiply 11025 by 1+a^{2}.
x+2xay+xa^{2}y^{2}=11025+11025a^{2}+275
Multiply 11 and 25 to get 275.
x+2xay+xa^{2}y^{2}=11300+11025a^{2}
Add 11025 and 275 to get 11300.
\left(1+2ay+a^{2}y^{2}\right)x=11300+11025a^{2}
Combine all terms containing x.
\left(a^{2}y^{2}+2ay+1\right)x=11025a^{2}+11300
The equation is in standard form.
\frac{\left(a^{2}y^{2}+2ay+1\right)x}{a^{2}y^{2}+2ay+1}=\frac{11025a^{2}+11300}{a^{2}y^{2}+2ay+1}
Divide both sides by 1+2ay+a^{2}y^{2}.
x=\frac{11025a^{2}+11300}{a^{2}y^{2}+2ay+1}
Dividing by 1+2ay+a^{2}y^{2} undoes the multiplication by 1+2ay+a^{2}y^{2}.
x=\frac{25\left(441a^{2}+452\right)}{\left(ay+1\right)^{2}}
Divide 11300+11025a^{2} by 1+2ay+a^{2}y^{2}.
x\left(1+2ay+a^{2}y^{2}\right)=11025\left(1+a^{2}\right)\times 1+11\times 25
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(1+ay\right)^{2}.
x+2xay+xa^{2}y^{2}=11025\left(1+a^{2}\right)\times 1+11\times 25
Use the distributive property to multiply x by 1+2ay+a^{2}y^{2}.
x+2xay+xa^{2}y^{2}=11025\left(1+a^{2}\right)+11\times 25
Multiply 11025 and 1 to get 11025.
x+2xay+xa^{2}y^{2}=11025+11025a^{2}+11\times 25
Use the distributive property to multiply 11025 by 1+a^{2}.
x+2xay+xa^{2}y^{2}=11025+11025a^{2}+275
Multiply 11 and 25 to get 275.
x+2xay+xa^{2}y^{2}=11300+11025a^{2}
Add 11025 and 275 to get 11300.
\left(1+2ay+a^{2}y^{2}\right)x=11300+11025a^{2}
Combine all terms containing x.
\left(a^{2}y^{2}+2ay+1\right)x=11025a^{2}+11300
The equation is in standard form.
\frac{\left(a^{2}y^{2}+2ay+1\right)x}{a^{2}y^{2}+2ay+1}=\frac{11025a^{2}+11300}{a^{2}y^{2}+2ay+1}
Divide both sides by 1+2ay+a^{2}y^{2}.
x=\frac{11025a^{2}+11300}{a^{2}y^{2}+2ay+1}
Dividing by 1+2ay+a^{2}y^{2} undoes the multiplication by 1+2ay+a^{2}y^{2}.
x=\frac{25\left(441a^{2}+452\right)}{\left(ay+1\right)^{2}}
Divide 11300+11025a^{2} by 1+2ay+a^{2}y^{2}.