x ( 1 + 5 \% ) ^ { 7 } - R = R \times \frac { 1 - ( 1 + 5 \% ) ^ { - 5 } } { 5 \% }
Solve for R
R=\frac{7355827511386641x}{27860634880000000}
Solve for x
x=\frac{27860634880000000R}{7355827511386641}
Graph
Share
Copied to clipboard
x\left(1+\frac{1}{20}\right)^{7}-R=R\times \frac{1-\left(1+\frac{5}{100}\right)^{-5}}{\frac{5}{100}}
Reduce the fraction \frac{5}{100} to lowest terms by extracting and canceling out 5.
x\times \left(\frac{21}{20}\right)^{7}-R=R\times \frac{1-\left(1+\frac{5}{100}\right)^{-5}}{\frac{5}{100}}
Add 1 and \frac{1}{20} to get \frac{21}{20}.
x\times \frac{1801088541}{1280000000}-R=R\times \frac{1-\left(1+\frac{5}{100}\right)^{-5}}{\frac{5}{100}}
Calculate \frac{21}{20} to the power of 7 and get \frac{1801088541}{1280000000}.
x\times \frac{1801088541}{1280000000}-R=R\times \frac{1-\left(1+\frac{1}{20}\right)^{-5}}{\frac{5}{100}}
Reduce the fraction \frac{5}{100} to lowest terms by extracting and canceling out 5.
x\times \frac{1801088541}{1280000000}-R=R\times \frac{1-\left(\frac{21}{20}\right)^{-5}}{\frac{5}{100}}
Add 1 and \frac{1}{20} to get \frac{21}{20}.
x\times \frac{1801088541}{1280000000}-R=R\times \frac{1-\frac{3200000}{4084101}}{\frac{5}{100}}
Calculate \frac{21}{20} to the power of -5 and get \frac{3200000}{4084101}.
x\times \frac{1801088541}{1280000000}-R=R\times \frac{\frac{884101}{4084101}}{\frac{5}{100}}
Subtract \frac{3200000}{4084101} from 1 to get \frac{884101}{4084101}.
x\times \frac{1801088541}{1280000000}-R=R\times \frac{\frac{884101}{4084101}}{\frac{1}{20}}
Reduce the fraction \frac{5}{100} to lowest terms by extracting and canceling out 5.
x\times \frac{1801088541}{1280000000}-R=R\times \frac{884101}{4084101}\times 20
Divide \frac{884101}{4084101} by \frac{1}{20} by multiplying \frac{884101}{4084101} by the reciprocal of \frac{1}{20}.
x\times \frac{1801088541}{1280000000}-R=R\times \frac{17682020}{4084101}
Multiply \frac{884101}{4084101} and 20 to get \frac{17682020}{4084101}.
x\times \frac{1801088541}{1280000000}-R-R\times \frac{17682020}{4084101}=0
Subtract R\times \frac{17682020}{4084101} from both sides.
x\times \frac{1801088541}{1280000000}-\frac{21766121}{4084101}R=0
Combine -R and -R\times \frac{17682020}{4084101} to get -\frac{21766121}{4084101}R.
-\frac{21766121}{4084101}R=-x\times \frac{1801088541}{1280000000}
Subtract x\times \frac{1801088541}{1280000000} from both sides. Anything subtracted from zero gives its negation.
-\frac{21766121}{4084101}R=-\frac{1801088541}{1280000000}x
Multiply -1 and \frac{1801088541}{1280000000} to get -\frac{1801088541}{1280000000}.
-\frac{21766121}{4084101}R=-\frac{1801088541x}{1280000000}
The equation is in standard form.
\frac{-\frac{21766121}{4084101}R}{-\frac{21766121}{4084101}}=-\frac{\frac{1801088541x}{1280000000}}{-\frac{21766121}{4084101}}
Divide both sides of the equation by -\frac{21766121}{4084101}, which is the same as multiplying both sides by the reciprocal of the fraction.
R=-\frac{\frac{1801088541x}{1280000000}}{-\frac{21766121}{4084101}}
Dividing by -\frac{21766121}{4084101} undoes the multiplication by -\frac{21766121}{4084101}.
R=\frac{7355827511386641x}{27860634880000000}
Divide -\frac{1801088541x}{1280000000} by -\frac{21766121}{4084101} by multiplying -\frac{1801088541x}{1280000000} by the reciprocal of -\frac{21766121}{4084101}.
x\left(1+\frac{1}{20}\right)^{7}-R=R\times \frac{1-\left(1+\frac{5}{100}\right)^{-5}}{\frac{5}{100}}
Reduce the fraction \frac{5}{100} to lowest terms by extracting and canceling out 5.
x\times \left(\frac{21}{20}\right)^{7}-R=R\times \frac{1-\left(1+\frac{5}{100}\right)^{-5}}{\frac{5}{100}}
Add 1 and \frac{1}{20} to get \frac{21}{20}.
x\times \frac{1801088541}{1280000000}-R=R\times \frac{1-\left(1+\frac{5}{100}\right)^{-5}}{\frac{5}{100}}
Calculate \frac{21}{20} to the power of 7 and get \frac{1801088541}{1280000000}.
x\times \frac{1801088541}{1280000000}-R=R\times \frac{1-\left(1+\frac{1}{20}\right)^{-5}}{\frac{5}{100}}
Reduce the fraction \frac{5}{100} to lowest terms by extracting and canceling out 5.
x\times \frac{1801088541}{1280000000}-R=R\times \frac{1-\left(\frac{21}{20}\right)^{-5}}{\frac{5}{100}}
Add 1 and \frac{1}{20} to get \frac{21}{20}.
x\times \frac{1801088541}{1280000000}-R=R\times \frac{1-\frac{3200000}{4084101}}{\frac{5}{100}}
Calculate \frac{21}{20} to the power of -5 and get \frac{3200000}{4084101}.
x\times \frac{1801088541}{1280000000}-R=R\times \frac{\frac{884101}{4084101}}{\frac{5}{100}}
Subtract \frac{3200000}{4084101} from 1 to get \frac{884101}{4084101}.
x\times \frac{1801088541}{1280000000}-R=R\times \frac{\frac{884101}{4084101}}{\frac{1}{20}}
Reduce the fraction \frac{5}{100} to lowest terms by extracting and canceling out 5.
x\times \frac{1801088541}{1280000000}-R=R\times \frac{884101}{4084101}\times 20
Divide \frac{884101}{4084101} by \frac{1}{20} by multiplying \frac{884101}{4084101} by the reciprocal of \frac{1}{20}.
x\times \frac{1801088541}{1280000000}-R=R\times \frac{17682020}{4084101}
Multiply \frac{884101}{4084101} and 20 to get \frac{17682020}{4084101}.
x\times \frac{1801088541}{1280000000}=R\times \frac{17682020}{4084101}+R
Add R to both sides.
x\times \frac{1801088541}{1280000000}=\frac{21766121}{4084101}R
Combine R\times \frac{17682020}{4084101} and R to get \frac{21766121}{4084101}R.
\frac{1801088541}{1280000000}x=\frac{21766121R}{4084101}
The equation is in standard form.
\frac{\frac{1801088541}{1280000000}x}{\frac{1801088541}{1280000000}}=\frac{21766121R}{\frac{1801088541}{1280000000}\times 4084101}
Divide both sides of the equation by \frac{1801088541}{1280000000}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{21766121R}{\frac{1801088541}{1280000000}\times 4084101}
Dividing by \frac{1801088541}{1280000000} undoes the multiplication by \frac{1801088541}{1280000000}.
x=\frac{27860634880000000R}{7355827511386641}
Divide \frac{21766121R}{4084101} by \frac{1801088541}{1280000000} by multiplying \frac{21766121R}{4084101} by the reciprocal of \frac{1801088541}{1280000000}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}