Solve for x
x=\left(-\frac{13}{5}+\frac{1}{5}i\right)y+\left(-\frac{6}{5}-\frac{3}{5}i\right)
Solve for y
y=\left(-\frac{13}{34}-\frac{1}{34}i\right)x+\left(-\frac{15}{34}-\frac{9}{34}i\right)
Share
Copied to clipboard
x\left(1+2i\right)=-3i-y\left(3+5i\right)
Subtract y\left(3+5i\right) from both sides.
x\left(1+2i\right)=-3i+\left(-3-5i\right)y
Multiply -1 and 3+5i to get -3-5i.
\left(1+2i\right)x=\left(-3-5i\right)y-3i
The equation is in standard form.
\frac{\left(1+2i\right)x}{1+2i}=\frac{\left(-3-5i\right)y-3i}{1+2i}
Divide both sides by 1+2i.
x=\frac{\left(-3-5i\right)y-3i}{1+2i}
Dividing by 1+2i undoes the multiplication by 1+2i.
x=\left(-\frac{13}{5}+\frac{1}{5}i\right)y+\left(-\frac{6}{5}-\frac{3}{5}i\right)
Divide -3i+\left(-3-5i\right)y by 1+2i.
y\left(3+5i\right)=-3i-x\left(1+2i\right)
Subtract x\left(1+2i\right) from both sides.
y\left(3+5i\right)=-3i+\left(-1-2i\right)x
Multiply -1 and 1+2i to get -1-2i.
\left(3+5i\right)y=\left(-1-2i\right)x-3i
The equation is in standard form.
\frac{\left(3+5i\right)y}{3+5i}=\frac{\left(-1-2i\right)x-3i}{3+5i}
Divide both sides by 3+5i.
y=\frac{\left(-1-2i\right)x-3i}{3+5i}
Dividing by 3+5i undoes the multiplication by 3+5i.
y=\left(-\frac{13}{34}-\frac{1}{34}i\right)x+\left(-\frac{15}{34}-\frac{9}{34}i\right)
Divide -3i+\left(-1-2i\right)x by 3+5i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}