Solve for y
y=\frac{x\left(x+100\right)}{100}
Solve for x (complex solution)
x=10\sqrt{y+25}-50
x=-10\sqrt{y+25}-50
Solve for x
x=10\sqrt{y+25}-50
x=-10\sqrt{y+25}-50\text{, }y\geq -25
Graph
Share
Copied to clipboard
100x\left(1+\frac{x}{100}\right)-100y=0
Multiply both sides of the equation by 100.
100x+100x\times \frac{x}{100}-100y=0
Use the distributive property to multiply 100x by 1+\frac{x}{100}.
100x+\frac{100x}{100}x-100y=0
Express 100\times \frac{x}{100} as a single fraction.
100x+xx-100y=0
Cancel out 100 and 100.
100x+x^{2}-100y=0
Multiply x and x to get x^{2}.
x^{2}-100y=-100x
Subtract 100x from both sides. Anything subtracted from zero gives its negation.
-100y=-100x-x^{2}
Subtract x^{2} from both sides.
-100y=-x^{2}-100x
The equation is in standard form.
\frac{-100y}{-100}=-\frac{x\left(x+100\right)}{-100}
Divide both sides by -100.
y=-\frac{x\left(x+100\right)}{-100}
Dividing by -100 undoes the multiplication by -100.
y=\frac{x^{2}}{100}+x
Divide -x\left(100+x\right) by -100.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}