Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(-6x^{2}-2x\right)\times 4=-22x
Use the distributive property to multiply x by -6x-2.
-24x^{2}-8x=-22x
Use the distributive property to multiply -6x^{2}-2x by 4.
-24x^{2}-8x+22x=0
Add 22x to both sides.
-24x^{2}+14x=0
Combine -8x and 22x to get 14x.
x\left(-24x+14\right)=0
Factor out x.
x=0 x=\frac{7}{12}
To find equation solutions, solve x=0 and -24x+14=0.
\left(-6x^{2}-2x\right)\times 4=-22x
Use the distributive property to multiply x by -6x-2.
-24x^{2}-8x=-22x
Use the distributive property to multiply -6x^{2}-2x by 4.
-24x^{2}-8x+22x=0
Add 22x to both sides.
-24x^{2}+14x=0
Combine -8x and 22x to get 14x.
x=\frac{-14±\sqrt{14^{2}}}{2\left(-24\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -24 for a, 14 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±14}{2\left(-24\right)}
Take the square root of 14^{2}.
x=\frac{-14±14}{-48}
Multiply 2 times -24.
x=\frac{0}{-48}
Now solve the equation x=\frac{-14±14}{-48} when ± is plus. Add -14 to 14.
x=0
Divide 0 by -48.
x=-\frac{28}{-48}
Now solve the equation x=\frac{-14±14}{-48} when ± is minus. Subtract 14 from -14.
x=\frac{7}{12}
Reduce the fraction \frac{-28}{-48} to lowest terms by extracting and canceling out 4.
x=0 x=\frac{7}{12}
The equation is now solved.
\left(-6x^{2}-2x\right)\times 4=-22x
Use the distributive property to multiply x by -6x-2.
-24x^{2}-8x=-22x
Use the distributive property to multiply -6x^{2}-2x by 4.
-24x^{2}-8x+22x=0
Add 22x to both sides.
-24x^{2}+14x=0
Combine -8x and 22x to get 14x.
\frac{-24x^{2}+14x}{-24}=\frac{0}{-24}
Divide both sides by -24.
x^{2}+\frac{14}{-24}x=\frac{0}{-24}
Dividing by -24 undoes the multiplication by -24.
x^{2}-\frac{7}{12}x=\frac{0}{-24}
Reduce the fraction \frac{14}{-24} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{7}{12}x=0
Divide 0 by -24.
x^{2}-\frac{7}{12}x+\left(-\frac{7}{24}\right)^{2}=\left(-\frac{7}{24}\right)^{2}
Divide -\frac{7}{12}, the coefficient of the x term, by 2 to get -\frac{7}{24}. Then add the square of -\frac{7}{24} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{12}x+\frac{49}{576}=\frac{49}{576}
Square -\frac{7}{24} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{7}{24}\right)^{2}=\frac{49}{576}
Factor x^{2}-\frac{7}{12}x+\frac{49}{576}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{24}\right)^{2}}=\sqrt{\frac{49}{576}}
Take the square root of both sides of the equation.
x-\frac{7}{24}=\frac{7}{24} x-\frac{7}{24}=-\frac{7}{24}
Simplify.
x=\frac{7}{12} x=0
Add \frac{7}{24} to both sides of the equation.