Solve for x
x=\frac{7}{12}\approx 0.583333333
x=0
Graph
Share
Copied to clipboard
\left(-6x^{2}-2x\right)\times 4=-22x
Use the distributive property to multiply x by -6x-2.
-24x^{2}-8x=-22x
Use the distributive property to multiply -6x^{2}-2x by 4.
-24x^{2}-8x+22x=0
Add 22x to both sides.
-24x^{2}+14x=0
Combine -8x and 22x to get 14x.
x\left(-24x+14\right)=0
Factor out x.
x=0 x=\frac{7}{12}
To find equation solutions, solve x=0 and -24x+14=0.
\left(-6x^{2}-2x\right)\times 4=-22x
Use the distributive property to multiply x by -6x-2.
-24x^{2}-8x=-22x
Use the distributive property to multiply -6x^{2}-2x by 4.
-24x^{2}-8x+22x=0
Add 22x to both sides.
-24x^{2}+14x=0
Combine -8x and 22x to get 14x.
x=\frac{-14±\sqrt{14^{2}}}{2\left(-24\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -24 for a, 14 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±14}{2\left(-24\right)}
Take the square root of 14^{2}.
x=\frac{-14±14}{-48}
Multiply 2 times -24.
x=\frac{0}{-48}
Now solve the equation x=\frac{-14±14}{-48} when ± is plus. Add -14 to 14.
x=0
Divide 0 by -48.
x=-\frac{28}{-48}
Now solve the equation x=\frac{-14±14}{-48} when ± is minus. Subtract 14 from -14.
x=\frac{7}{12}
Reduce the fraction \frac{-28}{-48} to lowest terms by extracting and canceling out 4.
x=0 x=\frac{7}{12}
The equation is now solved.
\left(-6x^{2}-2x\right)\times 4=-22x
Use the distributive property to multiply x by -6x-2.
-24x^{2}-8x=-22x
Use the distributive property to multiply -6x^{2}-2x by 4.
-24x^{2}-8x+22x=0
Add 22x to both sides.
-24x^{2}+14x=0
Combine -8x and 22x to get 14x.
\frac{-24x^{2}+14x}{-24}=\frac{0}{-24}
Divide both sides by -24.
x^{2}+\frac{14}{-24}x=\frac{0}{-24}
Dividing by -24 undoes the multiplication by -24.
x^{2}-\frac{7}{12}x=\frac{0}{-24}
Reduce the fraction \frac{14}{-24} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{7}{12}x=0
Divide 0 by -24.
x^{2}-\frac{7}{12}x+\left(-\frac{7}{24}\right)^{2}=\left(-\frac{7}{24}\right)^{2}
Divide -\frac{7}{12}, the coefficient of the x term, by 2 to get -\frac{7}{24}. Then add the square of -\frac{7}{24} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{12}x+\frac{49}{576}=\frac{49}{576}
Square -\frac{7}{24} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{7}{24}\right)^{2}=\frac{49}{576}
Factor x^{2}-\frac{7}{12}x+\frac{49}{576}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{24}\right)^{2}}=\sqrt{\frac{49}{576}}
Take the square root of both sides of the equation.
x-\frac{7}{24}=\frac{7}{24} x-\frac{7}{24}=-\frac{7}{24}
Simplify.
x=\frac{7}{12} x=0
Add \frac{7}{24} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}